A New Aspect for Security Notions: Secure Randomness in Public-Key Encryption Schemes

In this paper, we introduce a framework in which we can uniformly and comprehensively discuss security notions of public-key encryption schemes even for the case where some weak generator producing seemingly random sequences is used to encrypt plaintext messages. First, we prove that indistinguishability and semantic security are not equivalent in general. On the other hand, we derive some sufficient condition for the equivalence and show that polynomial-time pseudorandomness is not always necessary for the equivalence.

[1]  Silvio Micali,et al.  The Notion of Security for Probabilistic Cryptosystems , 1986, CRYPTO.

[2]  Adi Shamir,et al.  On the generation of cryptographically strong pseudorandom sequences , 1981, TOCS.

[3]  Hugo Krawczyk How to Predict Congruential Generators , 1992, J. Algorithms.

[4]  Joan Feigenbaum,et al.  Advances in Cryptology-Crypto 91 , 1992 .

[5]  Mihir Bellare,et al.  "Pseudo-Random" Number Generation Within Cryptographic Algorithms: The DDS Case , 1997, CRYPTO.

[6]  Takeshi Koshiba A Theory of Randomness for Public Key Cryptosystems: The ElGamal Cryptosystem Case , 2000 .

[7]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[8]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[9]  Daniel R. Simon,et al.  Non-Interactive Zero-Knowledge Proof of Knowledge and Chosen Ciphertext Attack , 1991, CRYPTO.

[10]  Silvio Micali,et al.  How to construct random functions , 1986, JACM.

[11]  Amit Sahai,et al.  Non-malleable Encryption: Equivalence between Two Notions, and an Indistinguishability-Based Characterization , 1999, CRYPTO.

[12]  Andrew Chi-Chih Yao,et al.  Theory and Applications of Trapdoor Functions (Extended Abstract) , 1982, FOCS.

[13]  Michael Luby,et al.  Pseudorandomness and cryptographic applications , 1996, Princeton computer science notes.

[14]  Burton S. Kaliski Advances in Cryptology - CRYPTO '97 , 1997 .

[15]  Manuel Blum,et al.  How to generate cryptographically strong sequences of pseudo random bits , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[16]  Andrew Chi-Chih Yao,et al.  Theory and application of trapdoor functions , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[17]  Jacques Stern,et al.  Secret linear congruential generators are not cryptographically secure , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[18]  Bart Preneel,et al.  Advances in cryptology - EUROCRYPT 2000 : International Conference on the Theory and Application of Cryptographic Techniques, Bruges, Belgium, May 14-18, 2000 : proceedings , 2000 .

[19]  Alfred Menezes,et al.  Handbook of Applied Cryptography , 2018 .

[20]  Adi Shamir,et al.  On the Generation of Cryptographically Strong Pseudo-Random Sequences , 1981, ICALP.

[21]  Alan M. Frieze,et al.  Reconstructing Truncated Integer Variables Satisfying Linear Congruences , 1988, SIAM J. Comput..

[22]  Moni Naor,et al.  Non-malleable cryptography , 1991, STOC '91.

[23]  Moni Naor,et al.  Public-key cryptosystems provably secure against chosen ciphertext attacks , 1990, STOC '90.

[24]  Silvio Micali,et al.  Public-Key Encryption in a Multi-user Setting: Security Proofs and Improvements , 2000, EUROCRYPT.

[25]  Manuel Blum,et al.  A Simple Unpredictable Pseudo-Random Number Generator , 1986, SIAM J. Comput..

[26]  Hugo Krawczyk,et al.  Advances in Cryptology - CRYPTO '98 , 1998 .

[27]  Joan Boyar,et al.  Inferring sequences produced by pseudo-random number generators , 1989, JACM.

[28]  Mihir Bellare,et al.  Relations among Notions of Security for Public-Key Encryption Schemes , 1998, IACR Cryptol. ePrint Arch..

[29]  Michael Wiener,et al.  Advances in Cryptology — CRYPTO’ 99 , 1999 .