A role for mRNA secondary structure in the control of translation initiation

[1]  C. Merril,et al.  Escherichia coli gal operon proteins made after prophage lambda induction , 1981, Journal of bacteriology.

[2]  M. Rosenberg,et al.  Differential translation efficiency explains discoordinate expression of the galactose operon , 1981, Cell.

[3]  M. Débarbouillé,et al.  Mutations that affect lamB gene expression at a posttranscriptional level. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[4]  T. Silhavy,et al.  Genetic analysis of the major outer membrane proteins of Escherichia coli. , 1981, Annual review of genetics.

[5]  G. Stormo,et al.  Translational initiation in prokaryotes. , 1981, Annual review of microbiology.

[6]  J. Clément,et al.  Location of a phage binding region on an outer membrane protein , 1980, FEBS letters.

[7]  S. Emr,et al.  A mechanism of protein localization: the signal hypothesis and bacteria , 1980, The Journal of cell biology.

[8]  T. Silhavy,et al.  A signal sequence is not sufficient to lead β-galactosidase out of the cytoplasm , 1980, Nature.

[9]  J. Clément,et al.  DNA sequence encoding the NH2-terminal peptide involved in transport of lambda receptor, an Escherichia coli secretory protein. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[10]  K. Yasunaka,et al.  Interaction of the lamB protein with the peptidoglycan layer in Escherichia coli K12. , 1980, European journal of biochemistry.

[11]  W. Boos,et al.  The role of the Escherichia coli λ receptor in the transport of maltose and maltodextrins , 1980 .

[12]  M. Roa Interaction of bacteriophage K10 with its receptor, the lamB protein of Escherichia coli , 1979, Journal of bacteriology.

[13]  T. Ferenci,et al.  Escherichia coli mutants impaired in maltodextrin transport , 1979, Journal of bacteriology.

[14]  S. Emr,et al.  Mutations altering the cellular localization of the phage lambda receptor, an Escherichia coli outer membrane protein. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[15]  M. Schwartz,et al.  Protein Ia and the lamB protein can replace each other in the constitution of an active receptor for the same coliphage. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[16]  W. Gilbert,et al.  A new method for sequencing DNA. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[17]  P. Ray,et al.  Synthesis of morphogenetic proteins by mutants of bacteriophage lambda carrying tandem genetic duplications. , 1976, Virology.

[18]  M. Hofnung,et al.  Maltose transport in Escherichia coli K-12: involvement of the bacteriophage lambda receptor , 1975, Journal of bacteriology.

[19]  J. Shine,et al.  Determinant of cistron specificity in bacterial ribosomes , 1975, Nature.

[20]  P. Ray,et al.  Functional inactivation of bacteriophage λ morphogenetic gene mRNA , 1975, Nature.

[21]  P. Ray,et al.  Evidence for post-transcriptional control of the morphogenetic genes of bacteriophage lambda. , 1974, Journal of molecular biology.

[22]  L. Randall-Hazelbauer,et al.  Isolation of the Bacteriophage Lambda Receptor from Escherichia coli , 1973, Journal of bacteriology.

[23]  D. Crothers,et al.  Improved estimation of secondary structure in ribonucleic acids. , 1973, Nature: New biology.

[24]  Jeffrey H. Miller Experiments in molecular genetics , 1972 .

[25]  J. Monod,et al.  Genetic regulatory mechanisms in the synthesis of proteins. , 1961, Journal of molecular biology.