Graphics processing unit accelerated phase field dislocation dynamics: Application to bi-metallic interfaces

Abstract We present the first high-performance computing implementation of the meso-scale phase field dislocation dynamics (PFDD) model on a graphics processing unit (GPU)-based platform. The implementation takes advantage of the portable OpenACC standard directive pragmas along with Nvidia's compute unified device architecture (CUDA) fast Fourier transform (FFT) library called CUFFT to execute the FFT computations within the PFDD formulation on the same GPU platform. The overall implementation is termed ACCPFDD-CUFFT. The package is entirely performance portable due to the use of OPENACC-CUDA inter-operability, in which calls to CUDA functions are replaced with the OPENACC data regions for a host central processing unit (CPU) and device (GPU). A comprehensive benchmark study has been conducted, which compares a number of FFT routines, the Numerical Recipes FFT (FOURN), Fastest Fourier Transform in the West (FFTW), and the CUFFT. The last one exploits the advantages of the GPU hardware for FFT calculations. The novel ACCPFDD-CUFFT implementation is verified using the analytical solutions for the stress field around an infinite edge dislocation and subsequently applied to simulate the interaction and motion of dislocations through a bi-phase copper-nickel (Cu–Ni) interface. It is demonstrated that the ACCPFDD-CUFFT implementation on a single TESLA K80 GPU offers a 27.6X speedup relative to the serial version and a 5X speedup relative to the 22-multicore Intel Xeon CPU E5-2699 v4 @ 2.20 GHz version of the code.

[2]  Marko Knezevic,et al.  Computer implementations of iterative and non-iterative crystal plasticity solvers on high performance graphics hardware , 2015 .

[3]  R. LeSar Simulations of Dislocation Structure and Response , 2014 .

[4]  Michael Ortiz,et al.  Nanomechanics of Defects in Solids , 1998 .

[5]  I. Beyerlein,et al.  Texture evolution and enhanced grain refinement under high-pressure-double-torsion , 2014 .

[6]  Eric Darve,et al.  Assembly of finite element methods on graphics processors , 2011 .

[7]  Petr Bauer,et al.  Implementation of the Vanka-type multigrid solver for the finite element approximation of the Navier-Stokes equations on GPU , 2016, Comput. Phys. Commun..

[8]  Mark D. Hill,et al.  Amdahl's Law in the Multicore Era , 2008 .

[9]  Laurent Stainier,et al.  a Phase-Field Theory of Dislocation Dynamics, Strain Hardening , 2002 .

[10]  Д.Р. Нугманов,et al.  Эволюция микроструктуры магниевого сплава МА14 в процессе всесторонней изотермической ковки , 2011 .

[11]  Marko Knezevic,et al.  A high-performance computational framework for fast crystal plasticity simulations , 2014 .

[12]  P. Withers,et al.  Residual stress. Part 1 – Measurement techniques , 2001 .

[13]  R. Valiev,et al.  Nanostructuring of metals by severe plastic deformation for advanced properties , 2004, Nature materials.

[14]  A. Hunter,et al.  Understanding dislocation mechanics at the mesoscale using phase field dislocation dynamics , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  A. Hunter,et al.  Stacking fault emission from grain boundaries: Material dependencies and grain size effects , 2014 .

[16]  Yu U. Wang,et al.  Phase field microelasticity modeling of dislocation dynamics near free surface and in heteroepitaxial thin films , 2003 .

[17]  A. Hunter,et al.  A phase field dislocation dynamics model for a bicrystal interface system: An investigation into dislocation slip transmission across cube-on-cube interfaces , 2016 .

[18]  Stephen A. Jarvis,et al.  Accelerating Hydrocodes with OpenACC, OpenCL and CUDA , 2012, 2012 SC Companion: High Performance Computing, Networking Storage and Analysis.

[19]  William H. Press,et al.  Numerical recipes in C , 2002 .

[20]  I. Beyerlein,et al.  Bulk texture evolution of nanolamellar Zr–Nb composites processed via accumulative roll bonding , 2015 .

[21]  I. Beyerlein,et al.  The plasticity of highly oriented nano-layered Zr/Nb composites , 2016 .

[22]  M. Knezevic,et al.  A dislocation density based elasto-plastic self-consistent model for the prediction of cyclic deformation: Application to AA6022-T4 , 2015 .

[23]  C. Henager,et al.  Slip resistance of interfaces and the strength of metallic multilayer composites , 2004 .

[24]  S. Semiatin,et al.  Spheroidization of the lamellar microstructure in Ti–6Al–4V alloy during warm deformation and annealing , 2011 .

[25]  O. Sitdikov,et al.  Microstructure evolution in MA14 magnesium alloy under multi-step isothermal forging , 2011 .

[26]  Marko Knezevic,et al.  Three orders of magnitude improved efficiency with high‐performance spectral crystal plasticity on GPU platforms , 2014 .

[27]  E. Wang,et al.  Fabrication of ZK60 magnesium alloy thin sheets with improved ductility by cold rolling and annealing treatment , 2012 .

[28]  Matti Ristinmaa,et al.  Accelerating crystal plasticity simulations using GPU multiprocessors , 2014 .

[29]  Michal Mrozowski,et al.  Generation of large finite-element matrices on multiple graphics processors , 2013 .

[30]  Steven G. Johnson,et al.  FFTW: an adaptive software architecture for the FFT , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[31]  Alan Needleman,et al.  Void growth and coalescence in porous plastic solids , 1988 .

[32]  Romain Dolbeau,et al.  Theoretical peak FLOPS per instruction set: a tutorial , 2017, The Journal of Supercomputing.

[33]  I. Beyerlein,et al.  Explicit incorporation of deformation twins into crystal plasticity finite element models , 2015 .

[34]  Yannis P. Korkolis,et al.  Dual-phase steel sheets under cyclic tension–compression to large strains: Experiments and crystal plasticity modeling , 2016 .

[35]  Steven G. Johnson,et al.  FFTW: Fastest Fourier Transform in the West , 2012 .

[36]  Toshio Mura,et al.  Micromechanics of defects in solids , 1982 .

[37]  M. Koslowski,et al.  Phase-field modeling of defect nucleation and propagation in domains with material inhomogeneities , 2013 .

[38]  X. Liao,et al.  Retaining ductility , 2004, Nature materials.

[39]  A. Rollett,et al.  Fast Fourier transform discrete dislocation dynamics , 2016 .

[40]  Jens Lothe John Price Hirth,et al.  Theory of Dislocations , 1968 .

[41]  A. Ngan,et al.  A molecular dynamics study on the orientation, size, and dislocation confinement effects on the plastic deformation of Al nanopillars , 2013 .

[42]  J. Hirth,et al.  On the strengthening effects of interfaces in multilayer fcc metallic composites , 2002 .

[43]  Cédric Pradalier,et al.  A FFT-based formulation for efficient mechanical fields computation in isotropic and anisotropic periodic discrete dislocation dynamics , 2015 .

[44]  A. Hunter,et al.  Relationship between monolayer stacking faults and twins in nanocrystals , 2015 .

[45]  M. Koslowski,et al.  Role of grain boundary energetics on the maximum strength of nanocrystalline Nickel , 2011 .

[46]  Steven G. Johnson,et al.  The Fastest Fourier Transform in the West , 1997 .

[47]  L. Kubin,et al.  Dislocations, Mesoscale Simulations and Plastic Flow , 2013 .

[48]  P. Lomdahl,et al.  Dislocation dynamics in the 2-d Frenkel-Kontorova model , 1986 .

[49]  Vasily V. Bulatov,et al.  Dislocation multi-junctions and strain hardening , 2006, Nature.

[50]  Jonathan D Hirst,et al.  Molecular Dynamics Simulations Using Graphics Processing Units , 2011, Molecular informatics.

[51]  Joshua A. Anderson,et al.  General purpose molecular dynamics simulations fully implemented on graphics processing units , 2008, J. Comput. Phys..

[52]  M. Ortiz,et al.  An Exactly Solvable Phase-Field Theory of Dislocation Dynamics, Strain Hardening and Hysteresis in Ductile Single Crystals , 2001, cond-mat/0109447.

[53]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[54]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[55]  Alberto M. Cuitiño,et al.  Nanoscale phase field microelasticity theory of dislocations: model and 3D simulations , 2001 .