Parareal convergence for 2D unsteady flow around a cylinder

In this technical report we study the convergence of Parareal for 2D incompressible flow around a cylinder for different viscosities. Two methods are used as fine integrator: backward Euler and a fractional step method. It is found that Parareal converges better for the implicit Euler, likely because it under-resolves the fine-scale dynamics as a result of numerical diffusion.

[1]  Volker John,et al.  Reference values for drag and lift of a two‐dimensional time‐dependent flow around a cylinder , 2004 .

[2]  Elena Celledoni,et al.  Norges Teknisk-naturvitenskapelige Universitet Parallelization in Time for Thermo-viscoplastic Problems in Extrusion of Aluminium Parallelization in Time for Thermo-viscoplastic Problems in Extrusion of Aluminium , 2022 .

[3]  Rolf Krause,et al.  Parallel-in-Space-and-Time Simulation of the Three-Dimensional, Unsteady Navier-Stokes Equations for Incompressible Flow , 2014, HPSC.

[4]  Jose C. F. Pereira,et al.  Parallel-in-Time Simulation of Two-Dimensional, Unsteady, Incompressible Laminar Flows , 2006 .

[5]  Guillaume Bal,et al.  On the Convergence and the Stability of the Parareal Algorithm to Solve Partial Differential Equations , 2005 .

[6]  M. Emmett,et al.  Extreme-scale space-time parallelism , 2013 .

[7]  Martin J. Gander,et al.  On the Superlinear and Linear Convergence of the Parareal Algorithm , 2007, CSE 2007.

[8]  J. Schöberl,et al.  Analysis of a Time Multigrid Algorithm for DG-Discretizations in Time , 2014 .

[9]  Martin J. Gander,et al.  Analysis of a Krylov subspace enhanced parareal algorithm for linear problems , 2008 .

[10]  Michael L. Minion,et al.  A HYBRID PARAREAL SPECTRAL DEFERRED CORRECTIONS METHOD , 2010 .

[11]  Rolf Krause,et al.  A stencil-based implementation of Parareal in the C++ domain specific embedded language STELLA , 2014, Appl. Math. Comput..

[12]  Yvon Maday,et al.  A Parareal in Time Semi-implicit Approximation of the Navier-Stokes Equations , 2005 .

[13]  Jose C. F. Pereira,et al.  Parallel‐in‐time simulation of the unsteady Navier–Stokes equations for incompressible flow , 2004 .

[14]  Rolf Krause,et al.  Convergence of Parareal for the Navier-Stokes equations depending on the Reynolds number , 2013, ArXiv.

[15]  Jan S. Hesthaven,et al.  On the Use of Reduced Basis Methods to Accelerate and Stabilize the Parareal Method , 2014 .

[16]  Gabriel Wittum,et al.  UG 4: A novel flexible software system for simulating PDE based models on high performance computers , 2013, Comput. Vis. Sci..

[17]  Martin J. Gander,et al.  50 Years of Time Parallel Time Integration , 2015 .

[18]  Gabriel Wittum,et al.  Numerical simulation of skin transport using Parareal , 2015, Comput. Vis. Sci..

[19]  Rolf Krause,et al.  A massively space-time parallel N-body solver , 2012, 2012 International Conference for High Performance Computing, Networking, Storage and Analysis.

[20]  R. Rannacher,et al.  Benchmark Computations of Laminar Flow Around a Cylinder , 1996 .

[21]  Jack Dongarra,et al.  Applied Mathematics Research for Exascale Computing , 2014 .

[22]  Charbel Farhat,et al.  Time‐parallel implicit integrators for the near‐real‐time prediction of linear structural dynamic responses , 2006 .

[23]  Rolf Krause,et al.  Explicit Parallel-in-time Integration of a Linear Acoustic-Advection System , 2012, ArXiv.