Engineering Nanowire n-MOSFETs at $L_{g}<8~{\rm nm}$

As metal-oxide-semiconductor field-effect transistors (MOSFETs) channel lengths (Lg) are scaled to lengths shorter than Lg <; 8 nm source-drain tunneling starts to become a major performance limiting factor. In this scenario, a heavier transport mass can be used to limit source-drain (S-D) tunneling. Taking InAs and Si as examples, it is shown that different heavier transport masses can be engineered using strain and crystal-orientation engineering. Full-band extended device atomistic quantum transport simulations are performed for nanowire MOSFETs at Lg <; 8 nm in both ballistic and incoherent scattering regimes. In conclusion, a heavier transport mass can indeed be advantageous in improving ON-state currents in ultrascaled nanowire MOSFETs.

[1]  F. Stern,et al.  Properties of Semiconductor Surface Inversion Layers in the Electric Quantum Limit , 1967 .

[2]  M. Lundstrom,et al.  Does source-to-drain tunneling limit the ultimate scaling of MOSFETs? , 2002, Digest. International Electron Devices Meeting,.

[3]  T. Boykin,et al.  Diagonal parameter shifts due to nearest-neighbor displacements in empirical tight-binding theory , 2002 .

[4]  J. Jopling,et al.  Tunnel current measurements on P/N junction diodes and implications for future device design , 2003, IEEE International Electron Devices Meeting 2003.

[5]  Gerhard Klimeck,et al.  Valence band effective-mass expressions in the sp 3 d 5 s * empirical tight-binding model applied to a Si and Ge parametrization , 2004 .

[6]  S. Thompson,et al.  Uniaxial-process-induced strained-Si: extending the CMOS roadmap , 2006, IEEE Transactions on Electron Devices.

[7]  W. Fichtner,et al.  Atomistic simulation of nanowires in the sp3d5s* tight-binding formalism: From boundary conditions to strain calculations , 2006 .

[8]  Noel Rodriguez,et al.  Influence of acoustic phonon confinement on electron mobility in ultrathin silicon on insulator layers , 2006 .

[9]  M. Lundstrom,et al.  Simulation of Carbon nanotube FETs including hot-phonon and self-heating effects , 2006, 2006 International Electron Devices Meeting.

[10]  Nicolas Cavassilas,et al.  Effective-mass approach for n-type semiconductor nanowire MOSFETs arbitrarily oriented , 2007 .

[11]  M. Rodwell,et al.  Simulation of Electron Transport in High-Mobility MOSFETs: Density of States Bottleneck and Source Starvation , 2007, 2007 IEEE International Electron Devices Meeting.

[12]  L. Selmi,et al.  Validity of the Parabolic Effective Mass Approximation in Silicon and Germanium n-MOSFETs With Different Crystal Orientations , 2007, IEEE Transactions on Electron Devices.

[13]  H. Riel,et al.  Toward Nanowire Electronics , 2008, IEEE Transactions on Electron Devices.

[14]  Yang Liu,et al.  A Tight-Binding Study of the Ballistic Injection Velocity for Ultrathin-Body SOI MOSFETs , 2008, IEEE Transactions on Electron Devices.

[15]  M. Luisier,et al.  Atomistic full-band simulations of silicon nanowire transistors: Effects of electron-phonon scattering , 2009 .

[16]  O. Faynot,et al.  Multi-Channel Field-Effect Transistor (MCFET)—Part I: Electrical Performance and Current Gain Analysis , 2009, IEEE Transactions on Electron Devices.

[17]  Changwook Jeong,et al.  On Backscattering and Mobility in Nanoscale Silicon MOSFETs , 2009, IEEE Transactions on Electron Devices.

[18]  Gerhard Klimeck,et al.  Strain-induced, off-diagonal, same-atom parameters in empirical tight-binding theory suitable for [110] uniaxial strain applied to a silicon parametrization , 2010 .

[19]  Phonon-limited mobility and injection velocity in n- and p-doped ultrascaled nanowire field-effect transistors with different crystal orientations , 2010, 2010 International Electron Devices Meeting.

[20]  Ru Huang,et al.  Investigation of Nanowire Line-Edge Roughness in Gate-All-Around Silicon Nanowire MOSFETs , 2010, IEEE Transactions on Electron Devices.

[21]  J. Alamo Nanometre-scale electronics with III–V compound semiconductors , 2011, Nature.

[22]  Jeffrey Bokor,et al.  Ultimate device scaling: Intrinsic performance comparisons of carbon-based, InGaAs, and Si field-effect transistors for 5 nm gate length , 2011, 2011 International Electron Devices Meeting.

[23]  M. Luisier,et al.  Multiscale Metrology and Optimization of Ultra-Scaled InAs Quantum Well FETs , 2010, IEEE Transactions on Electron Devices.

[24]  C. Auth,et al.  A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors , 2012, 2012 Symposium on VLSI Technology (VLSIT).

[25]  G. Klimeck,et al.  Material Selection for Minimizing Direct Tunneling in Nanowire Transistors , 2012, IEEE Transactions on Electron Devices.

[26]  Yuan Taur,et al.  Review and Critique of Analytic Models of MOSFET Short-Channel Effects in Subthreshold , 2012, IEEE Transactions on Electron Devices.

[27]  Meishoku Masahara,et al.  Two-step annealing effects on ultrathin EOT higher-k (k = 40) ALD-HfO2 gate stacks , 2012, 2012 Proceedings of the European Solid-State Device Research Conference (ESSDERC).

[28]  Two-step annealing effects on ultrathin EOT higher-k (k = 40) ALD-HfO2 gate stacks , 2013 .