Phylogeny and biogeography of the American live oaks (Quercus subsection Virentes): a genomic and population genetics approach

The nature and timing of evolution of niche differentiation among closely related species remains an important question in ecology and evolution. The American live oak clade, Virentes, which spans the unglaciated temperate and tropical regions of North America and Mesoamerica, provides an instructive system in which to examine speciation and niche evolution. We generated a fossil‐calibrated phylogeny of Virentes using RADseq data to estimate divergence times and used nuclear microsatellites, chloroplast sequences and an intron region of nitrate reductase (NIA‐i3) to examine genetic diversity within species, rates of gene flow among species and ancestral population size of disjunct sister species. Transitions in functional and morphological traits associated with ecological and climatic niche axes were examined across the phylogeny. We found the Virentes to be monophyletic with three subclades, including a southwest clade, a southeastern US clade and a Central American/Cuban clade. Despite high leaf morphological variation within species and transpecific chloroplast haplotypes, RADseq and nuclear SSR data showed genetic coherence of species. We estimated a crown date for Virentes of 11 Ma and implicated the formation of the Sea of Cortés in a speciation event ~5 Ma. Tree height at maturity, associated with fire tolerance, differs among the sympatric species, while freezing tolerance appears to have diverged repeatedly across the tropical–temperate divide. Sympatric species thus show evidence of ecological niche differentiation but share climatic niches, while allopatric and parapatric species conserve ecological niches, but diverge in climatic niches. The mode of speciation and/or degree of co‐occurrence may thus influence which niche axis plants diverge along.

[1]  W. Crepet,et al.  OAK CATKINS, LEAVES AND FRUITS FROM THE OLIGOCENE CATAHOULA FORMATION AND THEIR EVOLUTIONARY SIGNIFICANCE' , 1983 .

[2]  B. Riddle,et al.  Cryptic vicariance in the historical assembly of a Baja California peninsular desert biota. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[3]  H. Steinkellner,et al.  Conservation of (GA)n microsatellite loci between Quercus species , 1997 .

[4]  J. Cavender-Bares,et al.  Molecular, morphological, and ecological niche differentiation of sympatric sister oak species, Quercus virginiana and Q. geminata (Fagaceae). , 2009, American journal of botany.

[5]  O. Hardy,et al.  spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels , 2002 .

[6]  Deren A. R. Eaton,et al.  PyRAD: assembly of de novo RADseq loci for phylogenetic analyses , 2013, bioRxiv.

[7]  J. Nason,et al.  Not just vicariance: phylogeography of a Sonoran Desert euphorb indicates a major role of range expansion along the Baja peninsula , 2009, Molecular ecology.

[8]  R. Finkeldey,et al.  Genetic variation and differentiation within a natural community of five oak species (Quercus spp.). , 2007, Plant biology.

[9]  J. Cavender-Bares,et al.  Phylogenetic Overdispersion in Floridian Oak Communities , 2004, The American Naturalist.

[10]  K. Pigg,et al.  Anatomical and developmental study of petrified Quercus (Fagaceae) fruits from the Middle Miocene, Yakima Canyon, Washington, USA. , 1999, American journal of botany.

[11]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[12]  D. Schluter Introduction to the Symposium: Species Interactions and Adaptive Radiation , 2000, The American Naturalist.

[13]  M. Benito-Garzón,et al.  Hybrid Zones Between Two European Oaks: a Plant Community Approach , 2006, Plant Ecology.

[14]  Jeannine Cavender-Bares,et al.  Evidence for a freezing tolerance-growth rate trade-off in the live oaks (Quercus series Virentes) across the tropical-temperate divide. , 2012, The New phytologist.

[15]  V. Berry,et al.  Multiple nuclear genes stabilize the phylogenetic backbone of the genus Quercus , 2014 .

[16]  A. Hipp,et al.  Phylogenetic and trait similarity to a native species predict herbivory on non-native oaks , 2009, Proceedings of the National Academy of Sciences.

[17]  C. Schlötterer,et al.  Evidence for shared ancestral polymorphism rather than recurrent gene flow at microsatellite loci differentiating two hybridizing oaks (Quercus spp.) , 2004, Molecular ecology.

[18]  M. E. Douglas,et al.  Evolution of rattlesnakes (Viperidae; Crotalus) in the warm deserts of western North America shaped by Neogene vicariance and Quaternary climate change , 2006, Molecular ecology.

[19]  C. Sargent Notes on North American Trees. I. Quercus , 1918, Botanical Gazette.

[20]  K. Oyama,et al.  Morphological and RAPD analysis of hybridization between Quercus affinis and Q. laurina (fagaceae), two Mexican red oaks. , 2004, American journal of botany.

[21]  T. Yancey,et al.  Palynomorph biozones in the context of changing paleoclimate, middle Eocene to lower Oligocene of the northwest gulf of Mexico , 2000 .

[22]  M. Hedin,et al.  Studies of morphological and molecular phylogenetic divergence in spiders (Araneae: Homalonychus) from the American southwest, including divergence along the Baja California Peninsula. , 2006, Molecular phylogenetics and evolution.

[23]  E. Vázquez‐Domínguez,et al.  Consensus between genes and stones in the biogeographic and evolutionary history of Central America , 2013, Quaternary Research.

[24]  Monica F. Poelchau,et al.  Comparative phylogeography of three common Neotropical tree species , 2013 .

[25]  K. Oyama,et al.  Chloroplast DNA variation in the Quercus affinis–Q. laurina complex in Mexico: geographical structure and associations with nuclear and morphological variation , 2004, Molecular ecology.

[26]  Emmanuel Paradis,et al.  pegas: an R package for population genetics with an integrated-modular approach , 2010, Bioinform..

[27]  G. Evanno,et al.  Detecting the number of clusters of individuals using the software structure: a simulation study , 2005, Molecular ecology.

[28]  K. Oyama,et al.  Distribution, genetic structure, and conservation status of the rare microendemic species, Guaiacum unijugum (Zygophyllaceae) in the Cape Region of Baja California, Mexico , 2010 .

[29]  A. Fujimoto,et al.  A Practical Genome Scan for Population-Specific Strong Selective Sweeps That Have Reached Fixation , 2007, PloS one.

[30]  R. Petit,et al.  Measuring and testing genetic differentiation with ordered versus unordered alleles. , 1996, Genetics.

[31]  Matthew A. Gitzendanner,et al.  Patterns of genetic variation in rare and widespread plant congeners. , 2000, American journal of botany.

[32]  Jeannine M Cavender-Bares,et al.  Hydraulic properties and freezing‐induced cavitation in sympatric evergreen and deciduous oaks with contrasting habitats , 2001 .

[33]  A. Estoup,et al.  Microsatellite null alleles and estimation of population differentiation. , 2007, Molecular biology and evolution.

[34]  C. H. Muller The Live Oaks of the Series Virentes , 1961 .

[35]  G. Engelmann The Oaks of the United States , 1876, Botanical Bulletin.

[36]  J. Hamrick,et al.  Effects of life history traits on genetic diversity in plant species , 1996 .

[37]  P. Mann,et al.  Cenozoic tectonics of the Nicaraguan depression, Nicaragua, and Median Trough, El Salvador, based on seismic-reflection profiling and remote-sensing data , 2009 .

[38]  Joey Shaw,et al.  Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. , 2007, American journal of botany.

[39]  Jody Hey,et al.  Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics , 2007, Proceedings of the National Academy of Sciences.

[40]  Jeffrey Ross-Ibarra,et al.  Genetic Data Analysis II. Methods for Discrete Population Genentic Data , 2002 .

[41]  I. MacGregor‐Fors,et al.  How Are Oaks Distributed in the Neotropics? A Perspective from Species Turnover, Areas of Endemism, and Climatic Niches , 2015, International Journal of Plant Sciences.

[42]  Jared L. Strasburg,et al.  How robust are "isolation with migration" analyses to violations of the im model? A simulation study. , 2010, Molecular biology and evolution.

[43]  HISTORICAL VICARIANCE AND POSTGLACIAL COLONIZATION EFFECTS ON THE EVOLUTION OF GENETIC STRUCTURE IN LOPHOCEREUS, A SONORAN DESERT COLUMNAR CACTUS , 2002, Evolution; international journal of organic evolution.

[44]  S. Gerber,et al.  Leaf morphological analyses in four European oak species (Quercus) and their hybrids: A comparison of traditional and geometric morphometric methods , 2009 .

[45]  R. Petit,et al.  Phylogeographic structure of white oaks throughout the European continent. , 1997, Genetics.

[46]  P. Reich,et al.  Assessing the generality of global leaf trait relationships. , 2005, The New phytologist.

[47]  J. Cavender-Bares,et al.  Molecular and morphological support for a Florida origin of the Cuban oak , 2013 .

[48]  M. Ronikier,et al.  High genetic differentiation in the alpine plant Campanula alpina Jacq. (Campanulaceae): evidence for glacial survival in several Carpathian regions and long‐term isolation between the Carpathians and the Alps , 2008, Molecular ecology.

[49]  Deren A. R. Eaton,et al.  A Framework Phylogeny of the American Oak Clade Based on Sequenced RAD Data , 2014, PloS one.

[50]  B. Schaal,et al.  Interspecific gene flow in sympatric oaks. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[51]  D. Norris,et al.  Phylogeography of the neotropical sand fly Lutzomyia longipalpis inferred from mitochondrial DNA sequences. , 2002, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[52]  R. Finkeldey,et al.  Evidence for hybridization and introgression within a species-rich oak (Quercus spp.) community , 2007, BMC Evolutionary Biology.

[53]  C. Sargent Notes on North American Trees. VIII , 1921, Journal of the Arnold Arboretum.

[54]  G. Grimm,et al.  Significance of Pollen Characteristics for Infrageneric Classification and Phylogeny in Quercus (Fagaceae) , 2009, International Journal of Plant Sciences.

[55]  M. Nei,et al.  Estimation of average heterozygosity and genetic distance from a small number of individuals. , 1978, Genetics.

[56]  T. Markow,et al.  Genetic differentiation and demographic history in Drosophila pachea from the Sonoran Desert. , 2007, Hereditas.

[57]  Deren A. R. Eaton,et al.  Inferring Phylogeny and Introgression using RADseq Data: An Example from Flowering Plants (Pedicularis: Orobanchaceae) , 2013, Systematic biology.

[58]  W. Koenig,et al.  Limited hybridization between Quercus lobata and Quercus douglasii (Fagaceae) in a mixed stand in central coastal California. , 2002, American journal of botany.

[59]  K. Nixon,et al.  Phylogeny, biogeography, and processes of molecular differentiation in Quercus subgenus Quercus (Fagaceae). , 1999, Molecular phylogenetics and evolution.

[60]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[61]  H. D. Macginitie Fossil plants of the Florissant beds, Colorado , 1953 .

[62]  H. Iwata,et al.  SHAPE: a computer program package for quantitative evaluation of biological shapes based on elliptic Fourier descriptors. , 2002, The Journal of heredity.

[63]  R. Frankham Do island populations have less genetic variation than mainland populations? , 1997, Heredity.

[64]  H. Steinkellner,et al.  Characterization of (GA)n Microsatellite Loci from Quercus Robur , 2004 .

[65]  J. Cavender-Bares Chilling and freezing stress in live oaks (Quercus section Virentes): intra- and inter-specific variation in PS II sensitivity corresponds to latitude of origin , 2007, Photosynthesis Research.

[66]  D. Levin The Spatial Sorting of Ecological Species: Ghost of Competition or of Hybridization Past? , 2006 .

[67]  R. Petit,et al.  Chloroplast DNA variation in European white oaks phylogeography and patterns of diversity based on data from over 2600 populations , 2002 .

[68]  T. Markow,et al.  Microsatellite variation among diverging populations of Drosophila mojavensis , 2006, Journal of evolutionary biology.

[69]  R. Bacilieri,et al.  Genetic, morphological, ecological and phenological differentiation between Quercus petraea (Matt.) Liebl. and Quercus robur L. in a mixed stand of northwest of France , 1995 .

[70]  D. Baum,et al.  Phylogenetic utility of a nuclear intron from nitrate reductase for the study of closely related plant species. , 2002, Molecular phylogenetics and evolution.

[71]  B. Weir,et al.  Allozyme diversity in plant species. , 1990 .

[72]  F. Molina-Freaner,et al.  The genetic structure of a columnar cactus with a disjunct distribution: Stenocereus gummosus in the Sonoran desert , 2003, Heredity.

[73]  M. Pemonge,et al.  Frequent cytoplasmic exchanges between oak species that are not closely related: Quercus suber and Q. ilex in Morocco , 2001, Molecular ecology.

[74]  N. Ellstrand,et al.  POPULATION GENETIC CONSEQUENCES OF SMALL POPULATION SIZE: Implications for Plant Conservation , 1993 .

[75]  Campbell O. Webb,et al.  Phylogenetic signal in plant pathogen–host range , 2007, Proceedings of the National Academy of Sciences.

[76]  B. R. Riddlea,et al.  A step-wise approach to integrating phylogeographic and phylogenetic biogeographic perspectives on the history of a core North American warm deserts biota , 2006 .

[77]  R. Preszler,et al.  HOW DISCRETE ARE OAK SPECIES? INSIGHTS FROM A HYBRID ZONE BETWEEN QUERCUS GRISEA AND QUERCUS GAMBELII , 1997, Evolution; international journal of organic evolution.

[78]  C. H. Muller The origin of Quercus fusiformis Small1 , 1961 .

[79]  Ted J. Case,et al.  Island biogeography in the Sea of Cortéz , 1983 .

[80]  T. Burgess,et al.  Paleoclimatic Implications of Holocene Plant Remains from the Sierra Bacha, Sonora, Mexico , 1994 .

[81]  Jeannine Cavender-Bares,et al.  MULTIPLE TRAIT ASSOCIATIONS IN RELATION TO HABITAT DIFFERENTIATION AMONG 17 FLORIDIAN OAK SPECIES , 2004 .

[82]  S. González-Martínez,et al.  Gene flow and hybridisation in a mixed oak forest (Quercus pyrenaica Willd. and Quercus petraea (Matts.) Liebl.) in central Spain , 2005, Heredity.

[83]  J. Betancourt,et al.  Vegetation history along the eastern, desert escarpment of the Sierra San Pedro Mártir, Baja California, Mexico , 2011, Quaternary Research.

[84]  R. Dodd,et al.  Molecular differentiation and diversity among the California red oaks (Fagaceae; Quercus section Lobatae) , 2003, Theoretical and Applied Genetics.

[85]  L. Grismer Evolutionary biogeography on Mexico's Baja California peninsula: A synthesis of molecules and historical geology. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[86]  J. L. Parra,et al.  Very high resolution interpolated climate surfaces for global land areas , 2005 .

[87]  M. Iturralde-Vinent Meso-Cenozoic Caribbean Paleogeography: Implications for the Historical Biogeography of the Region , 2006 .

[88]  H. Reeve,et al.  Estimating effective paternity number in social insects and the effective number of alleles in a population , 2003, Molecular ecology.

[89]  L. Sloan,et al.  Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present , 2001, Science.

[90]  Jeannine Cavender-Bares,et al.  Phylogeography and climatic niche evolution in live oaks (Quercus series Virentes) from the tropics to the temperate zone , 2011 .

[91]  T. Denk,et al.  Fagaceae from the early Oligocene of Central Europe: Persisting new world and emerging old world biogeographic links , 2012 .

[92]  A. Hipp,et al.  Taxonomy of Hill's Oak (Quercus ellipsoidalis: Fagaceae): Evidence from AFLP Data , 2008 .

[93]  G. Stebbins,et al.  The Genetic Approach to Problems of Rare and Endemic Species , 2013 .

[94]  Campbell O. Webb,et al.  Phylodiversity-dependent seedling mortality, size structure, and disease in a Bornean rain forest. , 2006, Ecology.

[95]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[96]  Sean C. Thomas,et al.  The worldwide leaf economics spectrum , 2004, Nature.

[97]  H. Kurz,et al.  The Trees of Northern Florida. , 1963 .

[98]  J. Cavender-Bares,et al.  Introgression obscures and reveals historical relationships among the American live oaks , 2015, bioRxiv.

[99]  A. Kremer,et al.  ARE CHLOROPLAST AND MITOCHONDRIAL DNA VARIATION SPECIES INDEPENDENT IN OAKS? , 1999, Evolution; international journal of organic evolution.

[100]  J. Dewey,et al.  Permo-Triassic reconstruction of western Pangea and the evolution of the Gulf of MexicosCaribbean region , 1982 .

[101]  D. Ackerly,et al.  Niche evolution across spatial scales: climate and habitat specialization in California Lasthenia (Asteraceae) , 2012 .

[102]  Campbell O. Webb,et al.  Niche evolution and adaptive radiation: testing the order of trait divergence. , 2006, Ecology.