Optimal watermark detection under quantization in the transform domain

The widespread use of digital multimedia data has increased the need for effective means of copyright protection. Watermarking has attracted much attention, as it allows the embedding of a signature in a digital document in an imperceptible manner. In practice, watermarking is subject to various attacks, intentional or unintentional, which degrade the embedded information, rendering it more difficult to detect. A very common, but not malicious, attack is quantization, which is unavoidable for the compression and transmission of digital data. The effect of quantization attacks on the nearly optimal Cauchy watermark detector is examined in this paper. The quantization effects on this detection scheme are examined theoretically, by treating the watermark as a dither signal. The theory of dithered quantizers is used in order to correctly analyze the effect of quantization attacks on the Cauchy watermark detector. The theoretical results are verified by experiments that demonstrate the quantization effects on the detection and error probabilities of the Cauchy detection scheme.

[1]  Ingemar J. Cox,et al.  Watermarking as communications with side information , 1999, Proc. IEEE.

[2]  Heidi A. Peterson,et al.  Luminance-model-based DCT quantization for color image compression , 1992, Electronic Imaging.

[3]  K A Birney,et al.  On the modeling of DCT and subband image data for compression , 1995, IEEE Trans. Image Process..

[4]  J. Nolan,et al.  Maximum likelihood estimation and diagnostics for stable distributions , 2001 .

[5]  E. Fama,et al.  Some Properties of Symmetric Stable Distributions , 1968 .

[6]  Frank Hartung,et al.  Multimedia watermarking techniques , 1999, Proc. IEEE.

[7]  John G. Proakis,et al.  Digital Communications , 1983 .

[8]  Ahmed H. Tewfik,et al.  Transparent robust image watermarking , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[9]  Gennady Samorodnitsky,et al.  Stable Processes and Related Topics , 1991 .

[10]  M. Taqqu,et al.  Stable Non-Gaussian Random Processes : Stochastic Models with Infinite Variance , 1995 .

[11]  W. R. Bennett,et al.  Spectra of quantized signals , 1948, Bell Syst. Tech. J..

[12]  Edward J. Delp,et al.  Perceptual watermarks for digital images and video , 1999, Electronic Imaging.

[13]  Edward J. Delp,et al.  Perceptual watermarks for digital images and video , 1999 .

[14]  Bernd Girod,et al.  Quantization effects on digital watermarks , 2001, Signal Process..

[15]  Fernando Pérez-González,et al.  DCT-domain watermarking techniques for still images: detector performance analysis and a new structure , 2000, IEEE Trans. Image Process..

[16]  Fernando Pérez-González,et al.  Statistical analysis of watermarking schemes for copyright protection of images , 1999, Proc. IEEE.

[17]  H. Saunders,et al.  Probability, Random Variables and Stochastic Processes (2nd Edition) , 1989 .

[18]  Jerry D. Gibson,et al.  Distributions of the Two-Dimensional DCT Coefficients for Images , 1983, IEEE Trans. Commun..

[19]  Bernd Girod,et al.  Watermark Detection after Quanization Attacks , 1999, Information Hiding.

[20]  R. Gray,et al.  Dithered Quantizers , 1993, Proceedings. 1991 IEEE International Symposium on Information Theory.

[21]  Ingemar J. Cox,et al.  Secure spread spectrum watermarking for multimedia , 1997, IEEE Trans. Image Process..

[22]  Panagiotis Tsakalides,et al.  Hidden messages in heavy-tails: DCT-domain watermark detection using alpha-stable models , 2005, IEEE Transactions on Multimedia.

[23]  John Vanderkooy,et al.  A theory of nonsubtractive dither , 2000, IEEE Trans. Signal Process..

[24]  C. L. Nikias,et al.  Signal processing with alpha-stable distributions and applications , 1995 .

[25]  L. Schuchman Dither Signals and Their Effect on Quantization Noise , 1964 .

[26]  Panagiotis Tsakalides Array signal processing with alpha-stable distributions , 1995 .

[27]  Chrysostomos L. Nikias,et al.  Wideband array signal processing with alpha-stable distributions , 1995, Proceedings of MILCOM '95.

[28]  Andrew B. Watson,et al.  Visibility of DCT basis functions: effects of contrast masking , 1994, Proceedings of IEEE Data Compression Conference (DCC'94).

[29]  Fernando Pérez-González,et al.  Performance analysis of a 2-D-multipulse amplitude modulation scheme for data hiding and watermarking of still images , 1998, IEEE J. Sel. Areas Commun..

[30]  F. Muller Distribution shape of two-dimensional DCT coefficients of natural images , 1993 .

[31]  Ingemar J. Cox,et al.  Secure spread spectrum watermarking for images, audio and video , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[32]  Michael G. Strintzis,et al.  Optimal pyramidal decomposition for progressive multidimensional signal coding using optimal quantizers , 1998, IEEE Trans. Signal Process..

[33]  Michael G. Strintzis,et al.  Robust image watermarking in the subband or discrete cosine transform domain , 1998, 9th European Signal Processing Conference (EUSIPCO 1998).

[34]  Chrysostomos L. Nikias,et al.  Data-adaptive algorithms for signal detection in sub-Gaussian impulsive interference , 1997, IEEE Trans. Signal Process..

[35]  Michael G. Strintzis,et al.  Optimal construction of subband coders using Lloyd-Max quantizers , 1998, IEEE Trans. Image Process..