An excursion into the design space of biomimetic architectured biphasic actuators

Abstract Natural hygromorph actuators, such as those found in the pine cone or in the awns of wheat and the storksbill, achieve a large variety of motions by controlling the distribution of swellab...

[1]  H. Jerry Qi,et al.  Actuator Designs using Environmentally Responsive Hydrogels , 2008 .

[2]  P. Curie Sur la symétrie dans les phénomènes physiques, symétrie d'un champ électrique et d'un champ magnétique , 1894 .

[3]  S. Gorb,et al.  Structures in the cell wall that enable hygroscopic movement of wheat awns. , 2008, Journal of structural biology.

[4]  Peter Fratzl,et al.  Tensile and compressive stresses in tracheids are induced by swelling based on geometrical constraints of the wood cell , 2007, Planta.

[5]  Loon-Seng Tan,et al.  Electrothermal Polymer Nanocomposite Actuators , 2010, Advanced materials.

[6]  Bharat Bhushan,et al.  Biomimetics: lessons from nature–an overview , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[7]  R. Elbaum,et al.  The Role of Wheat Awns in the Seed Dispersal Unit , 2007, Science.

[8]  M. Acet Magnetic shape memory: Magnetoelastic sponges. , 2009, Nature materials.

[9]  A. Lendlein,et al.  Multifunctional Shape‐Memory Polymers , 2010, Advanced materials.

[10]  R. Pfeifer,et al.  Self-Organization, Embodiment, and Biologically Inspired Robotics , 2007, Science.

[11]  K. Schulgasser,et al.  THE MECHANICS OF SEED EXPULSION IN ACANTHACEAE , 1995 .

[12]  L. Mahadevan,et al.  Physical Limits and Design Principles for Plant and Fungal Movements , 2005, Science.

[13]  Michael F. Ashby,et al.  Actuator Classification and Selection—The Development of a Database , 2002 .

[14]  L. Mahadevan,et al.  Self-Organization of a Mesoscale Bristle into Ordered, Hierarchical Helical Assemblies , 2009, Science.

[15]  Salvatore Torquato,et al.  Optimal Design of Heterogeneous Materials , 2010 .

[16]  C. Neinhuis,et al.  G-fibres in storage roots of Trifolium pratense (Fabaceae): tensile stress generators for contraction. , 2010, The Plant journal : for cell and molecular biology.

[17]  David H Gracias,et al.  Reversible Actuation of Microstructures by Surface‐Chemical Modification of Thin‐Film Bilayers , 2010, Advanced materials.

[18]  F. Barth,et al.  Biomaterial systems for mechanosensing and actuation , 2009, Nature.

[19]  H Tanaka,et al.  Programmable matter by folding , 2010, Proceedings of the National Academy of Sciences.

[20]  J. Aizenberg,et al.  Reversible Switching of Hydrogel-Actuated Nanostructures into Complex Micropatterns , 2007, Science.

[21]  I. Burgert,et al.  Actuation systems in plants as prototypes for bioinspired devices , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[22]  Peter Fratzl,et al.  Biomimetic materials research: what can we really learn from nature's structural materials? , 2007, Journal of The Royal Society Interface.

[23]  S. Timoshenko,et al.  Analysis of Bi-Metal Thermostats , 1925 .

[24]  L. Mahadevan,et al.  How the Venus flytrap snaps , 2005, Nature.

[25]  Peter Fratzl,et al.  Cellulose fibrils direct plant organ movements. , 2008, Faraday discussions.

[26]  George Jeronimidis,et al.  Stress generation in the tension wood of poplar is based on the lateral swelling power of the G-layer. , 2008, The Plant journal : for cell and molecular biology.

[27]  C. Dawson,et al.  How pine cones open , 1997, Nature.