Statistical estimation of composite risk functionals and risk optimization problems

We address the statistical estimation of composite functionals which may be nonlinear in the probability measure. Our study is motivated by the need to estimate coherent measures of risk, which become increasingly popular in finance, insurance, and other areas associated with optimization under uncertainty and risk. We establish central limit theorems for composite risk functionals. Furthermore, we discuss the asymptotic behavior of optimization problems whose objectives are composite risk functionals and we establish a central limit formula of their optimal values when an estimator of the risk functional is used. While the mathematical structures accommodate commonly used coherent measures of risk, they have more general character, which may be of independent interest.

[1]  W. Sharpe,et al.  Mean-Variance Analysis in Portfolio Choice and Capital Markets , 1987 .

[2]  R. Rockafellar Conjugate Duality and Optimization , 1987 .

[3]  H. Markowitz Mean—Variance Analysis , 1989 .

[4]  Masaaki Kijima,et al.  Mean-risk analysis of risk aversion and wealth effects on optimal portfolios with multiple investment opportunities , 1993, Ann. Oper. Res..

[5]  A. V. D. Vaart,et al.  Asymptotic Statistics: U -Statistics , 1998 .

[6]  A. V. D. Vaart,et al.  Asymptotic Statistics: Frontmatter , 1998 .

[7]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[8]  Wlodzimierz Ogryczak,et al.  From stochastic dominance to mean-risk models: Semideviations as risk measures , 1999, Eur. J. Oper. Res..

[9]  J. Frédéric Bonnans,et al.  Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.

[10]  S. Kusuoka On law invariant coherent risk measures , 2001 .

[11]  Wlodzimierz Ogryczak,et al.  On consistency of stochastic dominance and mean–semideviation models , 2001, Math. Program..

[12]  R. Rockafellar,et al.  Conditional Value-at-Risk for General Loss Distributions , 2001 .

[13]  H. Föllmer,et al.  Stochastic Finance: An Introduction in Discrete Time , 2002 .

[14]  Wlodzimierz Ogryczak,et al.  Dual Stochastic Dominance and Related Mean-Risk Models , 2002, SIAM J. Optim..

[15]  Alexander Schied,et al.  Convex measures of risk and trading constraints , 2002, Finance Stochastics.

[16]  Bruce L. Jones,et al.  Empirical Estimation of Risk Measures and Related Quantities , 2003 .

[17]  W. Römisch Stability of Stochastic Programming Problems , 2003 .

[18]  Terry J. Lyons,et al.  Stochastic finance. an introduction in discrete time , 2004 .

[19]  M. Frittelli,et al.  Law invariant convex risk measures , 2005 .

[20]  Stan Uryasev,et al.  Generalized deviations in risk analysis , 2004, Finance Stochastics.

[21]  Werner Römisch,et al.  Delta Method, Infinite Dimensional , 2006 .

[22]  Alexander Shapiro,et al.  Optimization of Convex Risk Functions , 2006, Math. Oper. Res..

[23]  Preface to Modeling, Measuring and Managing Risk , 2007 .

[24]  M. Teboulle,et al.  AN OLD‐NEW CONCEPT OF CONVEX RISK MEASURES: THE OPTIMIZED CERTAINTY EQUIVALENT , 2007 .

[25]  P. Krokhmal Higher moment coherent risk measures , 2007 .

[26]  Bruce L. Jones,et al.  Risk measures, distortion parameters, and their empirical estimation , 2007 .

[27]  A. Shapiro Asymptotics of minimax stochastic programs , 2008 .

[28]  G. Pflug,et al.  Modeling, Measuring and Managing Risk , 2008 .

[29]  Vytaras Brazauskas,et al.  Estimating conditional tail expectation with actuarial applications in view , 2008 .

[30]  Patrick Cheridito,et al.  RISK MEASURES ON ORLICZ HEARTS , 2009 .

[31]  Alexander Shapiro,et al.  Lectures on Stochastic Programming: Modeling and Theory , 2009 .

[32]  Henryk Zähle,et al.  A modified functional delta method and its application to the estimation of risk functionals , 2010, J. Multivar. Anal..

[33]  Stoyan V. Stoyanov,et al.  Stochastic models for risk estimation in volatile markets: a survey , 2008, Ann. Oper. Res..

[34]  D. Dentcheva,et al.  Shape-restricted inference for Lorenz curves using duality theory , 2010 .

[35]  Darinka Dentcheva,et al.  Kusuoka representation of higher order dual risk measures , 2010, Ann. Oper. Res..

[36]  Georg Ch. Pflug,et al.  Asymptotic distribution of law-invariant risk functionals , 2010, Finance Stochastics.

[37]  Darinka Dentcheva,et al.  Mean-risk tests of stochastic dominance , 2011 .

[38]  Andrzej Ruszczynski,et al.  Two-Stage Portfolio Optimization with Higher-Order Conditional Measures of Risk , 2012 .

[39]  Denis Belomestny,et al.  Central Limit Theorems for Law-Invariant Coherent Risk Measures , 2012, J. Appl. Probab..

[40]  Spiridon I. Penev,et al.  Multistage optimization of option portfolio using higher order coherent risk measures , 2013, Eur. J. Oper. Res..

[41]  Hideatsu Tsukahara,et al.  Estimation of Distortion Risk Measures , 2014 .

[42]  Darinka Dentcheva,et al.  Risk preferences on the space of quantile functions , 2014, Math. Program..

[43]  Andrzej Ruszczynski,et al.  Two-stage portfolio optimization with higher-order conditional measures of risk , 2012, Ann. Oper. Res..

[44]  Tanja Neumann Mean Variance Analysis In Portfolio Choice And Capital Markets , 2016 .

[45]  Yu. K. Mashunin,et al.  Vector Optimization , 2017, Encyclopedia of Machine Learning and Data Mining.