Deterministic algorithms for the Lovasz Local Lemma: simpler, more general, and more parallel

The Lovasz Local Lemma (LLL) is a keystone principle in probability theory, guaranteeing the existence of configurations which avoid a collection $\mathcal B$ of "bad" events which are mostly independent and have low probability. In its simplest "symmetric" form, it asserts that whenever a bad-event has probability $p$ and affects at most $d$ bad-events, and $e p d < 1$, then a configuration avoiding all $\mathcal B$ exists. A seminal algorithm of Moser & Tardos (2010) gives nearly-automatic randomized algorithms for most constructions based on the LLL. However, deterministic algorithms have lagged behind. We address three specific shortcomings of the prior deterministic algorithms. First, our algorithm applies to the LLL criterion of Shearer (1985); this is more powerful than alternate LLL criteria and also removes a number of nuisance parameters and leads to cleaner and more legible bounds. Second, we provide parallel algorithms with much greater flexibility in the functional form of of the bad-events. Third, we provide a derandomized version of the MT-distribution, that is, the distribution of the variables at the termination of the MT algorithm. We show applications to non-repetitive vertex coloring, independent transversals, strong coloring, and other problems. These give deterministic algorithms which essentially match the best previous randomized sequential and parallel algorithms.

[1]  N. Alon The linear arboricity of graphs , 1988 .

[2]  Uriel Feige,et al.  Approximating the domatic number , 2000, STOC '00.

[3]  Edgar A. Ramos,et al.  Solving Some Discrepancy Problems in NC , 1997, Algorithmica.

[4]  David G. Harris Parallel algorithms for the Lopsided Lovász Local Lemma , 2017, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms.

[5]  Jan Vondrák,et al.  An Algorithmic Proof of the Lopsided Lovász Local Lemma ( simplified and condensed into lecture notes ) , 2015 .

[6]  David G. Harris Deterministic Parallel Algorithms for Bilinear Objective Functions , 2018, Algorithmica.

[7]  Klaus Jansen,et al.  Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques , 2012, Lecture Notes in Computer Science.

[8]  David G. Harris New bounds for the Moser-Tardos distribution , 2020, Random Struct. Algorithms.

[9]  Karthekeyan Chandrasekaran,et al.  Deterministic algorithms for the Lovász Local Lemma , 2009, SODA '10.

[10]  Noga Alon,et al.  Nonrepetitive colorings of graphs , 2002, Random Struct. Algorithms.

[11]  David G. Harris Deterministic Parallel Algorithms for Fooling Polylogarithmic Juntas and the Lovász Local Lemma , 2016, SODA.

[12]  Gábor Tardos,et al.  Extremal Problems For Transversals In Graphs With Bounded Degree , 2006, Comb..

[13]  Penny E. Haxell,et al.  Finding independent transversals efficiently , 2018, Combinatorics, Probability and Computing.

[14]  Bernhard Haeupler,et al.  Parallel Algorithms and Concentration Bounds for the Lovász Local Lemma via Witness DAGs , 2015, SODA.

[15]  James B. Shearer,et al.  On a problem of spencer , 1985, Comb..

[16]  Paul Erdös,et al.  Lopsided Lovász Local Lemma and Latin transversals , 1991, Discret. Appl. Math..

[17]  Endre Szemerédi,et al.  On complete subgraphs of r-chromatic graphs , 1975, Discret. Math..

[18]  David G. Harris Lopsidependency in the Moser-Tardos Framework , 2015, SODA.

[19]  Penny E. Haxell,et al.  A condition for matchability in hypergraphs , 1995, Graphs Comb..

[20]  József Beck A Remark Concerning Arithmetic Progressions , 1980, J. Comb. Theory, Ser. A.

[21]  Aldo Procacci,et al.  An Improvement of the Lovász Local Lemma via Cluster Expansion , 2009, Combinatorics, Probability and Computing.

[22]  Ron Aharoni,et al.  Independent systems of representatives in weighted graphs , 2007, Comb..

[23]  Michael Luby,et al.  A simple parallel algorithm for the maximal independent set problem , 1985, STOC '85.

[24]  Aravind Srinivasan,et al.  New Constructive Aspects of the Lovasz Local Lemma , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[25]  Gábor Tardos,et al.  The Local Lemma Is Asymptotically Tight for SAT , 2010, J. ACM.

[26]  D. Sivakumar Algorithmic derandomization via complexity theory , 2002, STOC '02.

[27]  Aravind Srinivasan,et al.  Algorithmic and Enumerative Aspects of the Moser-Tardos Distribution , 2015, SODA.

[28]  Mohsen Ghaffari,et al.  Sublogarithmic Distributed Algorithms for Lovász Local lemma, and the Complexity Hierarchy , 2017, DISC.

[29]  Mario Szegedy,et al.  Moser and tardos meet Lovász , 2011, STOC.

[30]  Penny E. Haxell An improved bound for the strong chromatic number , 2008, J. Graph Theory.

[31]  Noam Nisan,et al.  Pseudorandom generators for space-bounded computation , 1992, Comb..

[32]  David G. Harris,et al.  Algorithms for Weighted Independent Transversals and Strong Colouring , 2019, SODA.

[33]  Gábor Tardos,et al.  A constructive proof of the general lovász local lemma , 2009, JACM.