THE CHEMICAL ABUNDANCES OF STARS IN THE HALO (CASH) PROJECT. III. A NEW CLASSIFICATION SCHEME FOR CARBON-ENHANCED METAL-POOR STARS WITH s-PROCESS ELEMENT ENHANCEMENT

We present a detailed abundance analysis of 23 elements for a newly discovered carbon-enhanced metal-poor (CEMP) star, HE 0414−0343, from the Chemical Abundances of Stars in the Halo Project. Its spectroscopic stellar parameters are Teff = 4863 K, log g = 1.25 , ?> ξ = 2.20 km s−1, and [Fe/H] = −2.24. Radial velocity measurements covering seven years indicate HE 0414−0343 to be a binary. HE 0414−0343 has [C/Fe] = 1.44 ?> and is strongly enhanced in neutron-capture elements but its abundances cannot be reproduced by a solar-type s-process pattern alone. Traditionally, it could be classified as a “CEMP-r/s” star. Based on abundance comparisons with asymptotic giant branch (AGB) star nucleosynthesis models, we suggest a new physically motivated origin and classification scheme for CEMP-s stars and the still poorly understood CEMP-r/s. The new scheme describes a continuous transition between these two so-far distinctly treated subgroups: CEMP-sA, CEMP-sB, and CEMP-sC. Possible causes for a continuous transition include the number of thermal pulses the AGB companion underwent, the effect of different AGB star masses on their nucleosynthetic yields, and physics that is not well approximated in 1D stellar models such as proton ingestion episodes and rotation. Based on a set of detailed AGB models, we suggest the abundance signature of HE 0414−0343 to have arisen from a >1.3 M⊙ mass AGB star and a late-time mass transfer that transformed HE 0414−0343 into a CEMP-sC star. We also find that the [Y/Ba] ratio well parametrizes the classification and can thus be used to easily classify any future such stars.

[1]  R. Izzard,et al.  Carbon-enhanced metal-poor stars: a window on AGB nucleosynthesis and binary evolution - I. Detailed analysis of 15 binary stars with known orbital periods , 2015, 1502.07759.

[2]  A. Karakas,et al.  EVOLUTION AND NUCLEOSYNTHESIS OF ASYMPTOTIC GIANT BRANCH STELLAR MODELS OF LOW METALLICITY , 2014, 1410.7457.

[3]  T. Beers,et al.  CARBON-ENHANCED METAL-POOR STAR FREQUENCIES IN THE GALAXY: CORRECTIONS FOR THE EFFECT OF EVOLUTIONARY STATUS ON CARBON ABUNDANCES , 2014, 1410.2223.

[4]  J. Lattanzio,et al.  The Dawes Review 2: Nucleosynthesis and Stellar Yields of Low- and Intermediate-Mass Single Stars , 2014, Publications of the Astronomical Society of Australia.

[5]  M. Shetrone,et al.  Binarity in carbon-enhanced metal-poor stars , 2014, 1404.0385.

[6]  R. S. Ram,et al.  IMPROVED LINE DATA FOR THE SWAN SYSTEM 12C13C ISOTOPOLOGUE , 2014 .

[7]  Z. Magic,et al.  A single low-energy, iron-poor supernova as the source of metals in the star SMSS J031300.36−670839.3 , 2014, Nature.

[8]  J. Lawler,et al.  IMPROVED Ti ii log(gf) VALUES AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937 , 2013, 1309.1440.

[9]  Julie K. Hollek,et al.  ROBOSPECT: Automated Equivalent Width Measurement , 2013, 1308.0757.

[10]  T. Beers,et al.  METAL-POOR STARS OBSERVED WITH THE MAGELLAN TELESCOPE. I. CONSTRAINTS ON PROGENITOR MASS AND METALLICITY OF AGB STARS UNDERGOING s-PROCESS NUCLEOSYNTHESIS , 2013, 1304.7869.

[11]  Heather R. Jacobson,et al.  DERIVING STELLAR EFFECTIVE TEMPERATURES OF METAL-POOR STARS WITH THE EXCITATION POTENTIAL METHOD , 2013, 1304.2396.

[12]  J. Lawler,et al.  IMPROVED log(gf) VALUES FOR LINES OF Ti i AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937 (ACCURATE TRANSITION PROBABILITIES FOR Ti i) , 2013 .

[13]  Peter F. Bernath,et al.  Line strengths and updated molecular constants for the C2 Swan system , 2012, 1212.2102.

[14]  H. Winckel,et al.  Post-AGB stars in the SMC as tracers of stellar evolution: the extreme s-process enrichment of the 21 μm star J004441.04-732136.4 , 2012, 1203.4413.

[15]  A. Ryabtsev,et al.  Non-LTE effects on the lead and thorium abundance determinations for cool stars , 2012, 1202.2630.

[16]  S. Cristallo,et al.  s-Process in Low Metallicity Stars. III. Individual analysis of CEMP-s and CEMP-s/r with AGB models , 2012, 1201.6198.

[17]  R. Hirschi,et al.  Non-standard s process in low metallicity massive rotating stars , 2011, 1112.5548.

[18]  Maria Lugaro,et al.  THE s-PROCESS IN ASYMPTOTIC GIANT BRANCH STARS OF LOW METALLICITY AND THE COMPOSITION OF CARBON-ENHANCED METAL-POOR STARS , 2011, 1112.2757.

[19]  T. Beers,et al.  THE CHEMICAL ABUNDANCES OF STARS IN THE HALO (CASH) PROJECT. II. A SAMPLE OF 14 EXTREMELY METAL-POOR STARS, , 2011, 1108.4422.

[20]  S. Cristallo,et al.  The s-Process in Low Metallicity Stars. II. Interpretation of High-Resolution Spectroscopic Observations with AGB models , 2011, 1108.0500.

[21]  S. Shectman,et al.  THE ABUNDANCES OF NEUTRON-CAPTURE SPECIES IN THE VERY METAL-POOR GLOBULAR CLUSTER M15: A UNIFORM ANALYSIS OF RED GIANT BRANCH AND RED HORIZONTAL BRANCH STARS , 2011, 1103.1008.

[22]  J. Norris,et al.  Metal-Poor Stars and the Chemical Enrichment of the Universe , 2011, 1102.1748.

[23]  S. Campbell,et al.  IS EXTRA MIXING REALLY NEEDED IN ASYMPTOTIC GIANT BRANCH STARS? , 2010, 1002.4904.

[24]  Chris L. Fryer,et al.  CONVECTIVE–REACTIVE PROTON–12C COMBUSTION IN SAKURAI'S OBJECT (V4334 SAGITTARII) AND IMPLICATIONS FOR THE EVOLUTION AND YIELDS FROM THE FIRST GENERATIONS OF STARS , 2010, 1002.2241.

[25]  A. Karakas Updated stellar yields from asymptotic giant branch models , 2009, 0912.2142.

[26]  W. Aoki,et al.  Interpretation of CEMP(s) and CEMP(s + r) Stars with AGB Models , 2009, Publications of the Astronomical Society of Australia.

[27]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[28]  S. Cristallo,et al.  EVOLUTION, NUCLEOSYNTHESIS, AND YIELDS OF LOW-MASS ASYMPTOTIC GIANT BRANCH STARS AT DIFFERENT METALLICITIES , 2009, 1109.1176.

[29]  Astronomy,et al.  A holistic approach to carbon-enhanced metal-poor stars , 2009, 0901.4737.

[30]  Torino,et al.  The s-Process in Massive Stars at Low Metallicity: The Effect of Primary 14N from Fast Rotating Stars , 2008, 0810.0182.

[31]  E. Glebbeek,et al.  Thermohaline mixing and gravitational settling in carbon-enhanced metal-poor stars , 2008, 0807.1758.

[32]  T. Beers,et al.  The Hobby-Eberly Telescope Chemical Abundances of Stars in the Halo (CASH) Project. I. The Lithium-, s-, and r-enhanced Metal-poor Giant HKII 17435–00532 , 2008 .

[33]  H. Winckel,et al.  Stellar population synthesis of post-AGB stars: the s-process in MACHO 47.2496.8 , 2007, 0707.2288.

[34]  T. Beers,et al.  Discovery of HE 1523–0901, a Strongly r-Process-enhanced Metal-poor Star with Detected Uranium , 2007, astro-ph/0703414.

[35]  T. Beers,et al.  Carbon-enhanced Metal-poor Stars. I. Chemical Compositions of 26 Stars , 2006, astro-ph/0609702.

[36]  T. Beers,et al.  Bright Metal-poor Stars from the Hamburg/ESO Survey. I. Selection and Follow-up Observations from 329 Fields , 2006, astro-ph/0608332.

[37]  T. Beers,et al.  First stars X. The nature of three unevolved Carbon-Enhanced Metal-Poor stars ⋆ , 2006, astro-ph/0608112.

[38]  Hamburg,et al.  The Hamburg/ESO R-process enhanced star survey (HERES) - III. HE 0338-3945 and the formation of the r + s stars , 2006, astro-ph/0601476.

[39]  T. Beers,et al.  THE DISCOVERY AND ANALYSIS OF VERY METAL-POOR STARS IN THE GALAXY , 2005 .

[40]  T. Beers,et al.  Nucleosynthetic signatures of the first stars , 2005, Nature.

[41]  T. Beers,et al.  The Binary Frequency Among Carbon-enhanced, s-Process-rich, Metal-poor Stars , 2004, astro-ph/0412422.

[42]  J. Lawler,et al.  The Rise of the s-Process in the Galaxy , 2004, astro-ph/0410396.

[43]  V. Castellani,et al.  RR Lyrae variables in Galactic globular clusters: IV. Synthetic HB and RR Lyrae predictions , 2004, astro-ph/0407256.

[44]  R. Kurucz,et al.  New Grids of ATLAS9 Model Atmospheres , 2004, astro-ph/0405087.

[45]  T. Beers,et al.  First stars V - Abundance patterns from C to Zn and supernova yields in the early Galaxy , 2003, astro-ph/0311082.

[46]  C. Sneden,et al.  # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. GALACTIC EVOLUTION OF Sr, Y, AND Zr: A MULTIPLICITY OF NUCLEOSYNTHETIC PROCESSES , 2003 .

[47]  V. Hill,et al.  The Extremely Metal-poor, Neutron Capture-rich Star CS 22892-052: A Comprehensive Abundance Analysis , 2003, astro-ph/0303542.

[48]  D. Kelson Optimal Techniques in Two‐dimensional Spectroscopy: Background Subtraction for the 21st Century , 2003, astro-ph/0303507.

[49]  Stephen A. Shectman,et al.  MIKE: A Double Echelle Spectrograph for the Magellan Telescopes at Las Campanas Observatory , 2003, SPIE Astronomical Telescopes + Instrumentation.

[50]  G. Wasserburg,et al.  Abundance Analysis of HE 2148–1247, A Star with Extremely Enhanced Neutron Capture Elements , 2003, astro-ph/0301460.

[51]  T. Beers,et al.  A stellar relic from the early Milky Way , 2002, Nature.

[52]  D. Alexander,et al.  The Y2 Isochrones for α-Element Enhanced Mixtures , 2002, astro-ph/0208175.

[53]  T. Beers,et al.  First stars. I. The extreme r-element rich, iron-poor halo giant CS 31082-001 - Implications for the r-process site(s) and radioactive cosmochronology , 2002, astro-ph/0203462.

[54]  M. Busso,et al.  The 85Kr s-Process Branching and the Mass of Carbon Stars , 2001, astro-ph/0105486.

[55]  V. Smith,et al.  Nucleosynthesis and Mixing on the Asymptotic Giant Branch. III. Predicted and Observed s-Process Abundances , 2001, astro-ph/0104424.

[56]  T. Beers,et al.  Evidence of Multiple r-Process Sites in the Early Galaxy: New Observations of CS 22892–052 , 2000, The Astrophysical journal.

[57]  G. Wasserburg,et al.  Nucleosynthesis in asymptotic giant branch stars: Relevance for galactic enrichment and solar system formation , 1999 .

[58]  M. Busso,et al.  Neutron Capture in Low-Mass Asymptotic Giant Branch Stars: Cross Sections and Abundance Signatures , 1999, astro-ph/9906266.

[59]  Robert G. Tull,et al.  High-resolution fiber-coupled spectrograph of the Hobby-Eberly Telescope , 1998, Astronomical Telescopes and Instrumentation.

[60]  A. Chieffi,et al.  Evolution and Nucleosynthesis in Low-Mass Asymptotic Giant Branch Stars. II. Neutron Capture and the s-Process , 1998 .

[61]  P. Wood,et al.  Evolution of Low- and Intermediate-Mass Stars to the End of the Asymptotic Giant Branch with Mass Loss , 1993 .

[62]  V. Smith,et al.  The Chemical Composition of Red Giants. III. Further CNO Isotopic and s-Process Abundances in Thermally Pulsing Asymptotic Giant Branch Stars , 1990 .

[63]  Pierre Demarque,et al.  The Revised Yale Isochrones and Luminosity Functions , 1984 .

[64]  C. E. Moore,et al.  The Solar Spectrum 2935 Å to 8770 Å , 1966 .

[65]  C. A. Young,et al.  The Solar Spectrum , 1871, Nature.

[66]  T. Sivarani,et al.  The Hamburg/ESO R-process Enhanced Star survey (HERES). VIII. The r+s star HE 1405-0822 , 2013, 1308.4492.

[67]  Robert L. Kurucz,et al.  The solar spectrum , 1991 .