A Set of Flexible-GMRES Routines for Real and Complex Arithmetics
暂无分享,去创建一个
[1] James Hardy Wilkinson,et al. Rounding errors in algebraic processes , 1964, IFIP Congress.
[2] Françoise Chaitin-Chatelin,et al. Lectures on finite precision computations , 1996, Software, environments, tools.
[3] Luc Giraud,et al. A Set of GMRES Routines for Real and Complex Arithmetics , 1997 .
[4] Mei Han An,et al. accuracy and stability of numerical algorithms , 1991 .
[5] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[6] J. Navarro-Pedreño. Numerical Methods for Least Squares Problems , 1996 .
[7] Iain S. Duff,et al. Stopping Criteria for Iterative Solvers , 1992, SIAM J. Matrix Anal. Appl..
[8] Å. Björck. Numerics of Gram-Schmidt orthogonalization , 1994 .
[9] John N. Shadid,et al. Official Aztec user''s guide: version 2.1 , 1999 .
[10] G. Stewart,et al. Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization , 1976 .
[11] Richard Barrett,et al. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.
[12] Heinz Rutishauser,et al. Description of Algol 60 , 1967 .
[13] Luc Giraud,et al. On the Influence of the Orthogonalization Scheme on the Parallel Performance of GMRES , 1998, Euro-Par.
[14] Cornelis Vuik,et al. Parallel implementation of a multiblock method with approximate subdomain solution , 1999 .
[15] Yousef Saad,et al. A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..
[16] John N. Shadid,et al. A Comparison of Preconditioned Nonsymmetric Krylov Methods on a Large-Scale MIMD Machine , 1994, SIAM J. Sci. Comput..