New quadratic bent functions in polynomial forms with coefficients in extension fields

In this paper, we first discuss the bentness of a large class of quadratic Boolean functions in polynomial form $$f(x)=\sum _{i=1}^{{n}/{2}-1}\mathrm {Tr}^n_1(c_ix^{1+2^i})+ \mathrm {Tr}_1^{n/2}(c_{n/2}x^{1+2^{n/2}})$$f(x)=∑i=1n/2-1Tr1n(cix1+2i)+Tr1n/2(cn/2x1+2n/2), where n is even, $$c_i\in \mathrm {GF}(2^n)$$ci∈GF(2n) for $$1\le i \le {n}/{2}-1$$1≤i≤n/2-1 and $$c_{n/2}\in \mathrm {GF}(2^{n/2})$$cn/2∈GF(2n/2). The bentness of these functions can be connected with linearized permutation polynomials. Hence, methods for constructing quadratic bent functions are given. Further, we consider a subclass of quadratic Boolean functions of the form $$f(x)=\sum _{i=1}^{{m}/{2}-1}\mathrm {Tr}^n_1(c_ix^{1+2^{ei}})+ \mathrm {Tr}_1^{n/2}(c_{m/2}x^{1+2^{n/2}})$$f(x)=∑i=1m/2-1Tr1n(cix1+2ei)+Tr1n/2(cm/2x1+2n/2), where $$n=em$$n=em, m is even, and $$c_i\in \mathrm {GF}(2^e)$$ci∈GF(2e). The bentness of these functions is characterized and some methods for deriving new quadratic bent functions are given. Finally, when m and e satisfy some conditions, we determine the number of these quadratic bent functions.

[1]  Abraham Lempel,et al.  Maximal families of bent sequences , 1982, IEEE Trans. Inf. Theory.

[2]  O. Ore Theory of Non-Commutative Polynomials , 1933 .

[3]  O. Ore On a special class of polynomials , 1933 .

[4]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[5]  Rudolf Lide,et al.  Finite fields , 1983 .

[6]  P. Vijay Kumar,et al.  Binary sequences with Gold-like correlation but larger linear span , 1994, IEEE Trans. Inf. Theory.

[7]  Tor Helleseth,et al.  A New Family of Gold-Like Sequences , 2007, SSC.

[8]  Guang Gong,et al.  Constructions of quadratic bent functions in polynomial forms , 2006, IEEE Transactions on Information Theory.

[9]  Guang Gong,et al.  A New Characterization of Semi-bent and Bent Functions on Finite Fields* , 2006, Des. Codes Cryptogr..

[10]  Moon Ho Lee,et al.  A New Class of Bent Functions , 2005, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[11]  Daniel J. Katz,et al.  Sequences with Low Correlation , 2018, WAIFI.

[12]  Timo Neumann,et al.  BENT FUNCTIONS , 2006 .

[13]  Gregor Leander,et al.  Monomial bent functions , 2006, IEEE Transactions on Information Theory.

[14]  H. Niederreiter,et al.  Finite Fields: Encyclopedia of Mathematics and Its Applications. , 1997 .

[15]  Elwyn R. Berlekamp,et al.  Algebraic Coding Theory: Revised Edition , 2015 .

[16]  CarletClaude,et al.  Codes, Bent Functions and Permutations Suitable For DES-likeCryptosystems , 1998 .

[17]  Anne Canteaut,et al.  Construction of bent functions via Niho power functions , 2006, J. Comb. Theory, Ser. A.

[18]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[19]  Guang Gong,et al.  Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar , 2005 .

[20]  Claude Carlet,et al.  Codes, Bent Functions and Permutations Suitable For DES-like Cryptosystems , 1998, Des. Codes Cryptogr..

[21]  Robert Gold,et al.  Maximal recursive sequences with 3-valued recursive cross-correlation functions (Corresp.) , 1968, IEEE Trans. Inf. Theory.

[22]  Dengguo Feng,et al.  On Quadratic Bent Functions in Polynomial Forms , 2007, IEEE Transactions on Information Theory.

[23]  Claude Carlet,et al.  A Larger Class of Cryptographic Boolean Functions via a Study of the Maiorana-McFarland Construction , 2002, CRYPTO.

[24]  Jong-Seon No,et al.  New families of binary sequences with low correlation , 2003, IEEE Trans. Inf. Theory.

[25]  Baofeng Wu,et al.  Linearized polynomials over finite fields revisited , 2012, Finite Fields Their Appl..

[26]  Pascale Charpin,et al.  On bent and semi-bent quadratic Boolean functions , 2005, IEEE Transactions on Information Theory.

[27]  Robert A. Scholtz,et al.  Bent-function sequences , 1982, IEEE Trans. Inf. Theory.

[28]  R. McEliece Finite Fields for Computer Scientists and Engineers , 1986 .

[29]  Anne Canteaut,et al.  Decomposing bent functions , 2002, Proceedings IEEE International Symposium on Information Theory,.

[30]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[31]  G. Gong,et al.  A new family of Gold-like sequences , 2002, Proceedings IEEE International Symposium on Information Theory,.