Object Detection by Simple Fuzzy Classifiers Generated by Boosting

Finding key points based on SURF and SIFT and size of their vector reduction is a classical approach for object recognition systems. In this paper we present a new framework for object recognition based on generating simple fuzzy classifiers using key points and boosting meta learning to distinguish between one known class and other classes. We tested proposed approach on a known image dataset.

[1]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[2]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Paul A. Viola,et al.  Boosting Image Retrieval , 2004, International Journal of Computer Vision.

[4]  Ryszard Tadeusiewicz,et al.  Artificial Intelligence and Soft Computing - ICAISC 2006, 8th International Conference, Zakopane, Poland, June 25-29, 2006, Proceedings , 2006, International Conference on Artificial Intelligence and Soft Computing.

[5]  Leszek Rutkowski,et al.  Soft Techniques for Bayesian Classification , 2003 .

[6]  K. Cpałka On evolutionary designing and learning of flexible neuro-fuzzy structures for nonlinear classification , 2009 .

[7]  David Taniar,et al.  Computational Science and Its Applications - ICCSA 2005, International Conference, Singapore, May 9-12, 2005, Proceedings, Part I , 2005, ICCSA.

[8]  Jacek M. Zurada,et al.  Artificial Intelligence and Soft Computing - ICAISC 2008, 9th International Conference, Zakopane, Poland, June 22-26, 2008, Proceedings , 2008, ICAISC.

[9]  L. Rutkowski,et al.  Flexible Takagi-Sugeno fuzzy systems , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[10]  Wei Zhang,et al.  Object class recognition using multiple layer boosting with heterogeneous features , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[11]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[12]  R. Tadeusiewicz,et al.  Syntactic pattern recognition for X-ray diagnosis of pancreatic cancer , 2000, IEEE Engineering in Medicine and Biology Magazine.

[13]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, CVPR 2004.

[14]  Marek R. Ogiela,et al.  Intelligent Semantic Information Retrieval in Medical Pattern Cognitive Analysis , 2005, ICCSA.

[15]  Ying Liu,et al.  A survey of content-based image retrieval with high-level semantics , 2007, Pattern Recognit..

[16]  Krzysztof Cpalka A Method for Designing Flexible Neuro-fuzzy Systems , 2006, ICAISC.

[17]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[18]  Janusz T. Starczewski On Defuzzification of Interval Type-2 Fuzzy Sets , 2008, ICAISC.

[19]  Robert E. Schapire,et al.  A Brief Introduction to Boosting , 1999, IJCAI.

[20]  Marcin Korytkowski,et al.  From Ensemble of Fuzzy Classifiers to Single Fuzzy Rule Base Classifier , 2006, ICAISC.

[21]  Marek R. Ogiela,et al.  Cognitive Computing in Intelligent Medical Pattern Recognition Systems , 2006 .

[22]  Leszek Rutkowski,et al.  Neural Networks and Soft Computing , 2003 .

[23]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.