Analyzing Network Coding (Gossip) Made Easy

We introduce projection analysis—a new technique to analyze the stopping time of protocols that are based on random linear network coding (RLNC). Projection analysis drastically simplifies, extends, and strengthens previous results on RLNC gossip protocols. We analyze RLNC gossip in a general framework for network and communication models that encompasses and unifies the models used previously in this context. We show, in most settings for the first time, that the RLNC gossip converges with high probability in optimal time. Most stopping times are of the form O(k + T), where k is the number of messages to be distributed and T is the time it takes to disseminate one message. This means RLNC gossip achieves “perfect pipelining.” Our analysis directly extends to highly dynamic networks in which the topology can change completely at any time. This remains true, even if the network dynamics are controlled by a fully adaptive adversary that knows the complete network state. Virtually nothing besides simple O(kT) sequential flooding protocols was previously known for such a setting. While RLNC gossip works in this wide variety of networks our analysis remains the same and extremely simple. This contrasts with more complex proofs that were put forward to give less strong results for various special cases.

[1]  Andrea E. F. Clementi,et al.  Information Spreading in Stationary Markovian Evolving Graphs , 2009, IEEE Transactions on Parallel and Distributed Systems.

[2]  Dahlia Malkhi,et al.  On collaborative content distribution using multi-message gossip , 2006, Proceedings 20th IEEE International Parallel & Distributed Processing Symposium.

[3]  Nancy A. Lynch,et al.  Bounded-Contention Coding for Wireless Networks in the High SNR Regime , 2012, DISC.

[4]  Reuven Bar-Yehuda,et al.  On the time-complexity of broadcast in radio networks: an exponential gap between determinism randomization , 1987, PODC '87.

[5]  Nancy A. Lynch,et al.  Distributed computation in dynamic networks , 2010, STOC '10.

[6]  Divyakant Agrawal,et al.  Epidemic algorithms in replicated databases (extended abstract) , 1997, PODS.

[7]  George Giakkoupis Tight Bounds for Rumor Spreading with Vertex Expansion , 2014, SODA.

[8]  Bernhard Haeupler,et al.  Tighter Worst-Case Bounds on Algebraic Gossip , 2012, IEEE Communications Letters.

[9]  Chen Avin,et al.  How to Explore a Fast-Changing World (Cover Time of a Simple Random Walk on Evolving Graphs) , 2008, ICALP.

[10]  T. Ho,et al.  On Linear Network Coding , 2010 .

[11]  Dahlia Malkhi,et al.  Optimal gossip with direct addressing , 2014, PODC '14.

[12]  Devavrat Shah,et al.  Computing separable functions via gossip , 2005, PODC '06.

[13]  Muriel Médard,et al.  Optimality of network coding with buffers , 2011, 2011 IEEE Information Theory Workshop.

[14]  Bernhard Haeupler,et al.  Fast Structuring of Radio Networks Large for Multi-message Communications , 2013, DISC.

[15]  George Giakkoupis,et al.  Tight bounds for rumor spreading in graphs of a given conductance , 2011, STACS.

[16]  Jon M. Kleinberg,et al.  Spatial gossip and resource location protocols , 2001, JACM.

[17]  Johannes Gehrke,et al.  Gossip-based computation of aggregate information , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[18]  Andrea E. F. Clementi,et al.  Flooding Time of Edge-Markovian Evolving Graphs , 2010, SIAM J. Discret. Math..

[19]  David R. Karger,et al.  Faster information dissemination in dynamic networks via network coding , 2011, PODC '11.

[20]  Boaz Patt-Shamir,et al.  Adapting to Asynchronous Dynamic Networks , 1992 .

[21]  K. Jain,et al.  Practical Network Coding , 2003 .

[22]  Fred B. Schneider,et al.  Spreading rumors cheaply, quickly, and reliably , 2002 .

[23]  Christos Gkantsidis,et al.  Network coding for large scale content distribution , 2005, Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies..

[24]  Dan Suciu,et al.  Journal of the ACM , 2006 .

[25]  Muriel Médard,et al.  Algebraic gossip: a network coding approach to optimal multiple rumor mongering , 2006, IEEE Transactions on Information Theory.

[26]  Scott Shenker,et al.  Epidemic algorithms for replicated database maintenance , 1988, OPSR.

[27]  George Giakkoupis,et al.  Randomized Rumor Spreading in Dynamic Graphs , 2014, ICALP.

[28]  Muriel Médard,et al.  One packet suffices - Highly efficient packetized Network Coding With finite memory , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[29]  Edsger W. Dijkstra,et al.  Self-stabilizing systems in spite of distributed control , 1974, CACM.

[30]  Pierre Fraigniaud,et al.  Parsimonious flooding in dynamic graphs , 2009, PODC '09.

[31]  Arthur L. Liestman,et al.  A survey of gossiping and broadcasting in communication networks , 1988, Networks.

[32]  Muriel Médard,et al.  Network coded gossip with correlated data , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[33]  Andrea E. F. Clementi,et al.  Distributed multi-broadcast in unknown radio networks , 2001, PODC '01.

[34]  Emanuele Viola,et al.  On the Complexity of Information Spreading in Dynamic Networks , 2013, SODA.

[35]  Noga Alon,et al.  Broadcast Throughput in Radio Networks: Routing vs. Network Coding , 2012, SODA.

[36]  Joseph Y. Halpern,et al.  Gossip-based ad hoc routing , 2006, IEEE/ACM Trans. Netw..

[37]  Nancy A. Lynch,et al.  Bounded-Contention Coding for the additive network model , 2015, Distributed Computing.

[38]  Tracey Ho,et al.  A Random Linear Network Coding Approach to Multicast , 2006, IEEE Transactions on Information Theory.

[39]  Sachin Katti,et al.  The Importance of Being Opportunistic: Practical Network Coding for Wireless Environments , 2005 .

[40]  R. Koetter,et al.  The benefits of coding over routing in a randomized setting , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[41]  Jörg Widmer,et al.  Network coding: an instant primer , 2006, CCRV.

[42]  Chen Avin,et al.  Tight bounds for algebraic gossip on graphs , 2010, 2010 IEEE International Symposium on Information Theory.

[43]  Richard M. Karp,et al.  Randomized rumor spreading , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[44]  Joseph Y. Halpern,et al.  Gossip-based ad hoc routing , 2002, IEEE/ACM Transactions on Networking.

[45]  Shrinivas Kudekar,et al.  Algebraic gossip on Arbitrary Networks , 2009, ArXiv.

[46]  Vladimiro Sassone,et al.  Bulletin of the European Association for Theoretical Computer Science , 2005 .

[47]  Jon M. Kleinberg,et al.  Protocols and impossibility results for gossip-based communication mechanisms , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[48]  Petar Maymounkov,et al.  Global computation in a poorly connected world: fast rumor spreading with no dependence on conductance , 2011, STOC '12.

[49]  Muriel Médard,et al.  XORs in the Air: Practical Wireless Network Coding , 2006, IEEE/ACM Transactions on Networking.

[50]  Reuven Bar-Yehuda,et al.  On the Time-Complexity of Broadcast in Multi-hop Radio Networks: An Exponential Gap Between Determinism and Randomization , 1992, J. Comput. Syst. Sci..

[51]  Baochun Li,et al.  How Practical is Network Coding? , 2006, 200614th IEEE International Workshop on Quality of Service.

[52]  Donald M. Topkis,et al.  Concurrent Broadcast for Information Dissemination , 1985, IEEE Transactions on Software Engineering.

[53]  Boaz Patt-Shamir,et al.  Adapting to asynchronous dynamic networks (extended abstract) , 1992, STOC '92.

[54]  Fabian Kuhn,et al.  Lower Bounds on Information Dissemination in Dynamic Networks , 2012, DISC.

[55]  Devavrat Shah,et al.  Information Dissemination via Network Coding , 2006, 2006 IEEE International Symposium on Information Theory.

[56]  Juraj Hromkovič,et al.  Dissemination of Information in Interconnection Networks (Broadcasting & Gossiping) , 1996 .

[57]  Eli Upfal,et al.  Randomized Broadcast in Networks , 1990, Random Struct. Algorithms.

[58]  Andrea E. F. Clementi,et al.  Broadcasting in dynamic radio networks , 2009, J. Comput. Syst. Sci..

[59]  Baruch Awerbuch,et al.  Applying static network protocols to dynamic networks , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[60]  C. Fragouli,et al.  Efficient Broadcasting Using Network Coding , 2008, IEEE/ACM Transactions on Networking.

[61]  Jörg Widmer,et al.  A Network Coding Approach to Energy Efficient Broadcasting: From Theory to Practice , 2006, Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications.

[62]  Silvio Lattanzi,et al.  Almost tight bounds for rumour spreading with conductance , 2010, STOC '10.

[63]  Danny Hendler,et al.  On the complexity of global computation in the presence of link failures: the general case , 2005, Distributed Computing.

[64]  W DijkstraEdsger Self-stabilizing systems in spite of distributed control , 1974 .

[65]  趙志宏 Network Coding for Large Scale Content Distribution , 2005 .

[66]  Baruch Awerbuch,et al.  Dynamic networks are as fast as static networks , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[67]  Chen Avin,et al.  Bounds for algebraic gossip on graphs , 2010, Random Struct. Algorithms.

[68]  Muriel Médard,et al.  Optimality of Network Coding in Packet Networks , 2011, ArXiv.

[69]  Rudolf Ahlswede,et al.  Network information flow , 2000, IEEE Trans. Inf. Theory.

[70]  James Aspnes,et al.  An Introduction to Population Protocols , 2007, Bull. EATCS.

[71]  Bernhard Haeupler,et al.  Simple, Fast and Deterministic Gossip and Rumor Spreading , 2012, SODA.

[72]  Muriel Médard,et al.  On random network coding based information dissemination , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..