Selected new aspects of the calculus of variations in the large

We discuss some of the recent developments in variational methods while emphasizing new applications to nonlinear problems. We touch on several issues: (i) the formulation of variational set-ups which provide more information on the location of critical points and therefore on the qualitative properties of the solutions of corresponding Euler-Lagrange equations; (ii) the relationships between the energy of variationally generated solutions, their Morse indices, and the Hausdorff measure of their nodal sets; (iii) the gluing of several topological obstructions; (iv) the preservation of critical levels after deformation of functionals; (v) and the various ways to recover compactness in certain borderline variational problems.

[1]  Kazunaga Tanaka Morse indices at critical points related to the symmetric mountain pass theorem and applications , 1989 .

[2]  I. Ekeland,et al.  Symplectic topology and Hamiltonian dynamics , 1989 .

[3]  Pierre-Louis Lions,et al.  Nonlinear scalar field equations, II existence of infinitely many solutions , 1983 .

[4]  Louis Jeanjean,et al.  On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer-type problem set on ℝN , 1999, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[5]  J. Sacks,et al.  The Existence of Minimal Immersions of 2-Spheres , 1981 .

[6]  S. Solimini,et al.  Nontrivial solutions of operator equations and Morse indices of critical points of min-max type , 1986 .

[7]  N. Ghoussoub,et al.  The multiplicity of solutions in non-homogeneous boundary value problems , 2000 .

[8]  Vittorio Coti Zelati,et al.  Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials , 1991 .

[9]  Jean-Michel Coron,et al.  Multiple solutions of H‐systems and Rellich's conjecture , 1984 .

[10]  Elliott H. Lieb,et al.  Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities , 1983 .

[11]  A. Bahri Critical points at infinity in some variational problems , 1989 .

[12]  J. Coron,et al.  The scalar-curvature problem on the standard three-dimensional sphere , 1991 .

[13]  P. Rabinowitz,et al.  Periodic solutions of Hamiltonian systems of 3-body type , 1991 .

[14]  P. Lions The concentration-compactness principle in the Calculus of Variations , 1984 .

[15]  P. Lions,et al.  Solutions of superlinear elliptic equations and their morse indices , 1992 .

[16]  I. Ekeland,et al.  Convex Hamiltonian energy surfaces and their periodic trajectories , 1987 .

[17]  Kung-Ching Chang Infinite Dimensional Morse Theory , 1993 .

[18]  G. Fang On the Existence and the Classification of Critical Points for Non-Smooth Functionals , 1995, Canadian Journal of Mathematics.

[19]  Pierre-Louis Lions,et al.  Nonlinear scalar field equations, I existence of a ground state , 1983 .

[20]  Pierre-Louis Lions,et al.  Solutions of Hartree-Fock equations for Coulomb systems , 1987 .

[21]  N. Ghoussoub,et al.  Morse-type information on palais-smale sequences obtained by min-max principles , 1994 .

[22]  Elias M. Stein,et al.  Unique continuation and absence of positive eigenvalues for Schrodinger operators , 1985 .

[23]  Thierry Aubin,et al.  Nonlinear analysis on manifolds, Monge-Ampère equations , 1982 .

[24]  P. Rabinowitz,et al.  Dual variational methods in critical point theory and applications , 1973 .

[25]  Paul H. Rabinowitz,et al.  Periodic solutions of a Hamiltonian system on a prescribed energy surface , 1979 .

[26]  C. V. Coffman Lyusternik-Schnirelman theory: complementary principles and the Morse index , 1988 .

[27]  Yanheng Ding,et al.  Periodic Solutions of Hamiltonian Systems , 2000, SIAM J. Math. Anal..

[28]  Nassif Ghoussoub,et al.  Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents , 2000 .

[29]  Xuewei Yang Nodal Sets and Morse Indices of Solutions of Super-linear Elliptic PDEs , 1998 .

[30]  P. Lions The concentration-compactness principle in the calculus of variations. The locally compact case, part 1 , 1984 .

[31]  R. Hardt,et al.  Nodal sets for solutions of elliptic equations , 1989 .

[32]  I. Ekeland,et al.  On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface , 1980 .

[33]  Yiming Long,et al.  Multiplicity of closed characteristics on symmetric convex hypersurfaces in $\mathbb{R}^{2n}$ , 2001 .

[34]  É. Séré Existence of infinitely many homoclinic orbits in Hamiltonian systems , 1992 .

[35]  P. Lions,et al.  Morse index of some min-max critical points , 1988 .

[36]  C. Conley Isolated Invariant Sets and the Morse Index , 1978 .

[37]  J. Coron,et al.  On a nonlinear elliptic equation involving the critical sobolev exponent: The effect of the topology of the domain , 1988 .

[38]  C. Taubes Min-max theory for the Yang-Mills-Higgs equations , 1985 .

[39]  W. Ni,et al.  Locating the peaks of least energy solutions to a semilinear Neumann problem , 1993 .

[40]  A. Floer WITTEN'S COMPLEX AND INFINITE DIMENSIONAL MORSE THEORY , 1989 .

[41]  Paul H. Rabinowitz,et al.  Homoclinic type solutions for a semilinear elliptic PDE on ℝn , 1992 .

[42]  Marco Degiovanni,et al.  Deformation properties for continuous functionals and critical point theory , 1993 .

[43]  Y. Long Bott formula of the Maslov-type index theory , 1999 .

[44]  Nassif Ghoussoub,et al.  Duality and Perturbation Methods in Critical Point Theory , 1993 .

[45]  I. Ekeland,et al.  Periodic solutions with prescribed minimal period for convex autonomous hamiltonian systems , 1985 .

[46]  P. Rabinowitz,et al.  Borsuk-Ulam Theorems for Arbitrary S1 Actions and Applications. , 1982 .

[47]  G. Tarantello Nodal solutions of semilinear elliptic equations with critical exponent , 1992, Differential and Integral Equations.

[48]  Haim Brezis,et al.  Positive solutions of nonlinear elliptic equations involving critical sobolev exponents , 1983 .

[49]  P. Rabinowitz Minimax methods in critical point theory with applications to differential equations , 1986 .

[50]  C. Coffman,et al.  A non-linear boundary value problem with many positive solutions , 1984 .

[51]  M. Esteban,et al.  Solutions of the Dirac–Fock Equations for Atoms¶and Molecules , 1999 .

[52]  Michael Struwe,et al.  The existence of surfaces of constant mean curvature with free boundaries , 1988 .

[53]  N. Ghoussoub,et al.  Deformation from symmetry and multiplicity of solutions in non-homogeneous problems , 2001 .

[54]  P. Bolle On the Bolza Problem , 1999 .

[55]  I. Ekeland Nonconvex minimization problems , 1979 .

[56]  H. Berestycki,et al.  A perturbation method in critical point theory and applications , 1981 .

[57]  Michael Struwe,et al.  Variational methods: Applications to nonlinear partial differential equations and Hamiltonian systems , 1990 .

[58]  Chun-gen Liu,et al.  Multiplicity of closed characteristics on symmetric convex hypersurfaces in R , 2022 .

[59]  C. Taubes Path-connected Yang-Mills moduli spaces , 1984 .

[60]  Kazunaga Tanaka Periodic solutions for singular Hamiltonian systems and closed geodesics on non-compact Riemannian manifolds , 2000 .

[61]  A. Weinstein On the hypotheses of Rabinowitz' periodic orbit theorems , 1979 .

[62]  I. Ekeland Une théorie de Morse pour les systèmes hamiltoniens convexes , 1984 .

[63]  B. Gidas,et al.  Symmetry of positive solutions of nonlinear elliptic equations in R , 1981 .

[64]  C. Viterbo Indice de Morse des points critiques obtenus par minimax , 1988 .

[65]  C. Taubes A framework for Morse theory for the Yang-Mills functional , 1988 .

[66]  Variational Methods in Nonlinear Problems , 1992 .

[67]  I. Ekeland Convexity Methods In Hamiltonian Mechanics , 1990 .

[68]  I. Ekeland,et al.  Syplectic topology and Hamiltonian dynamics II , 1990 .

[69]  S. Solimini Morse index estimates in min-max theorems , 1989 .

[70]  J. Serrin,et al.  The structure of the critical set in the mountain pass theorem , 1987 .

[71]  Emmanuel Hebey,et al.  Nonlinear analysis on manifolds , 1999 .

[72]  J. Jost,et al.  Existence results for mean field equations , 1997, dg-ga/9710023.

[73]  J. Eells,et al.  NONLINEAR ANALYSIS ON MANIFOLDS MONGE-AMPÈRE EQUATIONS (Grundlehren der mathematischen Wissenschaften, 252) , 1984 .

[74]  Changfeng Gui,et al.  Existence of multi-bumb solutions for nonlinear schrödinger equations via variational method , 1996 .

[75]  Helmut Hofer,et al.  A Geometric Description of the Neighbourhood of a Critical Point Given by the Mountain‐Pass Theorem , 1985 .

[76]  Yiming Long,et al.  Precise Iteration Formulae of the Maslov-type Index Theory and Ellipticity of Closed Characteristics , 2000 .

[77]  Vieri Benci,et al.  Critical point theorems for indefinite functionals , 1979 .

[78]  A. Bahri Superlinear elliptic equations , 1987 .

[79]  J. Mawhin,et al.  Critical Point Theory and Hamiltonian Systems , 1989 .

[80]  Robert V. Kohn,et al.  First order interpolation inequalities with weights , 1984 .

[81]  A. Ambrosetti,et al.  Periodic solutions of singular Lagrangian systems , 1993 .

[82]  D. Preiss,et al.  A general mountain pass principle for locating and classifying critical points , 1989 .

[83]  Kuang-Chao Chang In nite Dimensional Morse Theory and Multiple Solution Problems , 1992 .

[84]  N. Ghoussoub Location, multiplicity and Morse indices of min-max critical points. , 1991 .

[85]  Henrik Egnell Positive solutions of semilinear equations in cones , 1992 .

[86]  Nassif Ghoussoub,et al.  Multi-peak solutions for a semilinear Neumann problem involving the critical Sobolev exponent , 1998 .

[87]  Michael Struwe,et al.  On multivortex solutions in Chern-Simons gauge theory , 1998 .

[88]  C. Fefferman,et al.  Nodal sets of eigenfunctions on Reimannian manifolds , 1988 .