Rating of Non Proportional Reinsurance Treaties Based on Ordered Claims

The purpose of the present paper is to give a survey of mathematical models and methods for rating special nonproportional reinsurance treaties, so-called non- proportional reinsurance treaties based on ordered claims. The emphasis lies on describing the different main approaches with a thorough formulation of the basic stochastic assumptions, whereas details dealing with the practical implementation are mostly avoided. The rating of the nonproportional reinsurance treaties in the view of the following presentation consists mainly in applying or modifying concepts and results of Mathematical Statistics.

[1]  E. J. Gumbel,et al.  Statistics of Extremes. , 1960 .

[2]  Rating of Largest Claims and Ecomor Reinsurance Treaties for Large Portfolios , 1982, ASTIN Bulletin.

[3]  E. Kremer An asymptotic formula for the net premium of some reinsurance treaties , 1984 .

[4]  On the Use of Extreme Values to Estimate the Premium for an Excess of Loss Reinsurance , 1964, ASTIN Bulletin.

[5]  M. Goovaerts,et al.  On an application of a smoothing inequality to the estimation of stop-loss premiums , 1980 .

[6]  Galen R. Shorack,et al.  Functions of Order Statistics , 1972 .

[7]  P. Bickel Some contributions to the theory of order statistics , 1967 .

[8]  Analytical studies in stop-loss reinsurance. II , 1951 .

[9]  G. Ramachandran,et al.  Extreme Value Theory and Large Fire Losses , 1974, ASTIN Bulletin.

[10]  J. D. T. Oliveira,et al.  The Asymptotic Theory of Extreme Order Statistics , 1979 .

[11]  G. Benktander Largest Claims Reinsurance (LCR). A Quick Method to Calculate LCR-Risk Rates from Excess of Loss Risk Rates , 1978 .

[12]  Yehuda Kahane The Theory of Insurance Risk Premiums—A Re-Examination in the Light of Recent Developments in Capital Market Theory , 1979, ASTIN Bulletin.

[13]  M. Goovaerts,et al.  Ordering of risks: a review , 1982 .

[14]  Jozef L. Teugels,et al.  Estimation of ruin probabilities , 1977, Advances in Applied Probability.

[15]  Klaus Gerathewohl Rückversicherung : Grundlagen und Praxis , 1976 .

[16]  Vic Barnett,et al.  Outliers in Statistical Data , 1980 .

[17]  Erhard Kremer Das allgemeine Exposure-Verfahren zur Tarifierung von Unfall-Schadenexzedenten-Verträgen , 1981 .

[18]  B. Berliner Correlations between excess of loss reinsurance covers and reinsurance of the n largest claims baruch berliner , 1972, ASTIN Bulletin.

[19]  Marc Goovaerts,et al.  Analytical best upper bounds on stop-loss premiums , 1982 .

[20]  E. Kremer The burning cost method and ratio estimation , 1984 .

[21]  Hans U. Gerber,et al.  An introduction to mathematical risk theory , 1982 .

[22]  E. Kremer Distribution-free upper bounds on the premiums of the LCR and ECOMOR treaties , 1983 .

[23]  F. De Vylder,et al.  Best upper bounds for integrals with respect to measures allowed to vary under conical and integral constraints , 1982 .

[24]  H. Gerber On the numerical evaluation of the distribution of aggregate claims and its stop-loss premiums , 1982 .

[25]  G. Taylor Upper bounds on stop-loss premiums under constraints on claim size distribution , 1977 .

[26]  J. Pickands Statistical Inference Using Extreme Order Statistics , 1975 .

[27]  S. Stigler Linear Functions of Order Statistics , 1969 .

[28]  H. Gerber,et al.  Some Inequalities for Stop-Loss Premiums , 1977, ASTIN Bulletin.

[29]  D. S. Moore,et al.  An Elementary Proof of Asymptotic Normality of Linear Functions of Order Statistics , 1968 .

[30]  J. Tiago,et al.  Statistical Methodology for Large Claims , 1977 .

[31]  H. Bohman,et al.  Studies in risk theory with numerical illustrations concerning distribution function and stop loss premiums. Part II , 1963 .

[32]  Hilary L. Seal Stochastic Theory of a Risk Business , 1969 .

[33]  J. Kupper Contributions to the Theory of the Largest Claim Cover , 1971, ASTIN Bulletin.

[34]  Ragnar Norberg,et al.  The credibility approach to experience rating , 1979 .

[35]  I. Weissman Estimation of Parameters and Large Quantiles Based on the k Largest Observations , 1978 .

[36]  R. Serfling Approximation Theorems of Mathematical Statistics , 1980 .

[37]  R. Beard Some Notes on the Statistical Theory of Extreme Values , 1963, ASTIN Bulletin.