A Birkhoff-James cosine function for normed linear spaces

The cosine function is a classical tool for measuring angles in inner product spaces, and it has various extensions to normed linear spaces. In this paper, we investigate a cosine function for the convex angle formed by two nonzero elements of a complex normed linear space, in connection with recent results on the Birkhoff-James approximate orthogonality sets.

[1]  J. Chmieli'nski,et al.  On an -Birkhoff orthogonality. , 2005 .

[2]  T. Szostok ON A GENERALIZATION OF THE SINE FUNCTION , 2003 .

[3]  J. Duncan,et al.  Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras: Hermitian elements of a complex unital Banach algebra , 1971 .

[4]  Keishiro Ohira On Some Characterizations of Abstract Euclidean Spaces by Properties of Orthogonality , 1952 .

[5]  J. Giles Classes of semi-inner-product spaces , 1967 .

[6]  M. Day,et al.  Some characterizations of inner-product spaces , 1947 .

[7]  P. Psarrakos,et al.  Birkhoff–James approximate orthogonality sets and numerical ranges , 2011 .

[8]  P. Psarrakos,et al.  On the continuity of Birkhoff–James -orthogonality sets , 2013 .

[9]  G. Lumer SEMI-INNER-PRODUCT SPACES , 1961 .

[10]  R. C. James Orthogonality and linear functionals in normed linear spaces , 1947 .

[11]  Garrett Birkhoff,et al.  Orthogonality in linear metric spaces , 1935 .

[12]  H. Martini,et al.  Angles in normed spaces , 2016, 1607.06938.

[13]  P. Psarrakos,et al.  Birkhoff–James ε-orthogonality sets of vectors and vector-valued polynomials , 2017 .

[14]  R. C. James,et al.  Inner products in normed linear spaces , 1947 .

[15]  Sever S Dragomir,et al.  Semi-Inner Products and Applications , 2003 .

[16]  GROWTH CONDITIONS AND THE NUMERICAL RANGE IN A BANACH ALGEBRA , 1968 .

[17]  R. Bhatia,et al.  Orthogonality of matrices and some distance problems , 1999 .

[18]  F. Bonsall,et al.  Numerical Ranges II , 1973 .

[19]  A complete characterization of Birkhoff-James orthogonality in infinite dimensional normed space , 2017, 1706.07713.

[20]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[21]  D. Amir Characterizations of Inner Product Spaces , 1986 .

[22]  W. A. Wilson A Relation Between Metric and Euclidean Spaces , 1932 .

[23]  Robert E. Megginson An Introduction to Banach Space Theory , 1998 .

[24]  P. Psarrakos,et al.  A definition of numerical range of rectangular matrices , 2009 .

[25]  Mappings approximately preserving orthogonality in normed spaces , 2010 .