Stable implicit time-integration of flexible rotating structures—explanation for instabilities and concepts for avoidance

Abstract Instabilities occurring during the implicit time-integration are still handicapping a time-efficient solution of large FEM systems of equations. Especially the simulation of flexible rotating structures is barely mastered by implicit FEM codes. For this, the Newmark algorithm and related algorithms are used for many years. Here, we derive the reasons for the mentioned inevitable numerical issues and present concepts that lead to an efficient and stable solution.

[1]  Thomas J. R. Hughes,et al.  A note on the stability of Newmark's algorithm in nonlinear structural dynamics , 1977 .

[2]  Anton Tkachuk,et al.  Variational methods for selective mass scaling , 2013 .

[3]  James M. Ricles,et al.  Stability Analysis of Direct Integration Algorithms Applied to MDOF Nonlinear Structural Dynamics , 2008 .

[4]  M. Crisfield,et al.  A co‐rotational element/time‐integration strategy for non‐linear dynamics , 1994 .

[5]  Ted Belytschko,et al.  Stability and error analysis for time integrators applied to strain-softening materials , 1995 .

[6]  Andrew Tyas,et al.  Increasing the critical time step: micro-inertia, inertia penalties and mass scaling , 2011 .

[7]  J. C. Simo,et al.  The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics , 1992 .

[8]  M. Crisfield,et al.  Energy‐conserving and decaying Algorithms in non‐linear structural dynamics , 1999 .

[9]  B. H. Aubert,et al.  A mass penalty technique to control the critical time increment in explicit dynamic finite element analyses , 1995 .

[10]  R. Fletcher Practical Methods of Optimization , 1988 .

[11]  Grant P. Steven,et al.  Instability, chaos, and growth and decay of energy of time‐stepping schemes for non‐linear dynamic equations , 1994 .

[12]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[13]  U. Galvanetto,et al.  AN ENERGY‐CONSERVING CO‐ROTATIONAL PROCEDURE FOR THE DYNAMICS OF PLANAR BEAM STRUCTURES , 1996 .

[14]  K. Bathe,et al.  On a composite implicit time integration procedure for nonlinear dynamics , 2005 .

[15]  Steen Krenk,et al.  Energy conservation in Newmark based time integration algorithms , 2006 .

[16]  K. Bathe,et al.  Stability and accuracy analysis of direct integration methods , 1972 .

[17]  J. C. Simo,et al.  Non-linear dynamics of three-dimensional rods: Exact energy and momentum conserving algorithms , 1995 .

[18]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[19]  Mattias Unosson,et al.  Selective mass scaling for explicit finite element analyses , 2005 .