Entropy solution at concave corners and ridges, and volume boundary layer tangential adaptivity

Abstract Two particular aspects of volume boundary layer mesh generation applied to non smooth geometries are considered in this work. First, the treatment of concave ridges and corners is tackled from a generic viewpoint. Entropy satisfying elements are generated where shocks form in the volume. This proves useful to avoid premature halt of the boundary layer, and therefore potential jumps in the normal size. The connection with the Voronoi diagram is commented. Second, boundary layer adaptivity in the tangential plane is considered to honor arbitrary sizing prescription, and avoid size mismatch between the boundary layer and the isotropic sizing. It is shown that a strict semi-structured framework has to be abandoned in general to accommodate changes in the mesh topology. Size transition between boundary layer and fully unstructured anisotropic mesh is automatically taken into account. Both the concavity problem and the tangential adaptivity are presented together, since they require similar mesh operators. Various numerical examples illustrate the method.

[1]  Sabine Stifter,et al.  An Axiomatic Approach to Voronoi-Diagrams in 3D , 1991, J. Comput. Syst. Sci..

[2]  Jianfei Liu,et al.  SPR — A New Method for Mesh Improvement and Boundary Recovery , 2007 .

[3]  R. Löhner,et al.  Applied Computational Fluid Dynamics Techniques: An Introduction Based on Finite Element Methods , 2001 .

[4]  Shahyar Pirzadeh,et al.  Viscous unstructured three-dimensional grids by the advancing-layers method , 1994 .

[5]  David L. Marcum,et al.  Generation of unstructured grids for viscous flow applications , 1995 .

[6]  Denis Gueyffier,et al.  High-fidelity, dynamic CAD model for propagating surfaces and moving meshes , 2017 .

[7]  D. Thompson,et al.  Quality improvements in extruded meshes using topologically adaptive generalized elements , 2003 .

[8]  Alan M. Shih,et al.  Efficient Hybrid Surface/Volume Mesh Generation Using Suppressed Marching-Direction Method , 2013 .

[9]  Hervé Delingette,et al.  An Anisotropic Multi-front Fast Marching Method for Real-Time Simulation of Cardiac Electrophysiology , 2007, FIMH.

[10]  Xiangmin Jiao,et al.  Variational generation of prismatic boundary‐layer meshes for biomedical computing , 2009, International journal for numerical methods in engineering.

[11]  Y. Kallinderis,et al.  A 3-D finite-volume method for the Navier-Stokes equations with adaptive hybrid grids , 1996 .

[12]  R. Löhner,et al.  Generation of viscous grids at ridges and corners , 2009 .

[13]  Herman Deconinck,et al.  A folding/unfolding algorithm for the construction of semi-structured layers in hybrid grid generation , 2005 .

[14]  A. Aleksandrov,et al.  Intrinsic Geometry of Surfaces , 1967 .

[15]  Rainald Löhner,et al.  Linear Sources for Mesh Generation , 2013, SIAM J. Sci. Comput..

[16]  Carlo L. Bottasso,et al.  A Procedure for Tetrahedral Boundary Layer Mesh Generation , 2002, Engineering with Computers.

[17]  Rainald Löhner,et al.  A linelet preconditioner for incompressible flow solvers , 2003 .

[18]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[19]  Saikat Dey,et al.  An Entropy Satisfying Boundary Layer Surface Mesh Generation , 2015, SIAM J. Sci. Comput..

[20]  Dorothee Martin,et al.  An implicit, linelet-based solver for incompressible flows , 1992 .

[21]  J. Peraire,et al.  UNSTRUCTURED TETRAHEDRAL MESH GENERATION FOR THREE-DIMENSIONAL VISCOUS FLOWS , 1996 .

[22]  Nicholas M. Patrikalakis,et al.  An Algorithm for the Medial Axis Transform of 3D Polyhedral Solids , 1996, IEEE Trans. Vis. Comput. Graph..

[23]  Jonathan Richard Shewchuk,et al.  Anisotropic voronoi diagrams and guaranteed-quality anisotropic mesh generation , 2003, SCG '03.

[24]  P. George,et al.  ‘Ultimate’ robustness in meshing an arbitrary polyhedron , 2003 .

[25]  Eric L. Mestreau,et al.  Smooth anisotropic sources with application to three-dimensional surface mesh generation , 2015, Engineering with Computers.

[26]  D. Marcum,et al.  On a robust boundary layer mesh generation process , 2017 .

[27]  Y. Kallinderis,et al.  Prismatic grid generation with an efficient algebraic method for aircraft configurations , 1992 .

[28]  Saikat Dey,et al.  A three-dimensional parametric mesher with surface boundary-layer capability , 2014, J. Comput. Phys..

[29]  J. A. Shaw,et al.  The rapid and robust generation of efficient hybrid grids for rans simulations over complete aircraft , 2003 .

[30]  J. O´Rourke,et al.  Computational Geometry in C: Arrangements , 1998 .

[31]  Jean Daunizeau,et al.  Accurate Anisotropic Fast Marching for Diffusion-Based Geodesic Tractography , 2007, Int. J. Biomed. Imaging.

[32]  Marie-Gabrielle Vallet,et al.  How to Subdivide Pyramids, Prisms, and Hexahedra into Tetrahedra , 1999, IMR.

[33]  Tommy Minyard,et al.  Adaptive hybrid grid methods , 2000 .

[34]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .

[35]  Saikat Dey,et al.  Boundary layer mesh generation on arbitrary geometries , 2017 .

[36]  Steve L. Karman Unstructured Viscous Layer Insertion Using Linear-Elastic Smoothing , 2007 .

[37]  Jon G. Rokne,et al.  A straightforward algorithm for computing the medial axis of a simple polygon , 1991, Int. J. Comput. Math..

[38]  Frédéric Alauzet,et al.  Alignment and orthogonality in anisotropic metric-based mesh adaptation , 2015 .

[39]  Rida T. Farouki,et al.  Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable , 2007, Geometry and Computing.

[40]  Rainald Loehner,et al.  Matching semi-structured and unstructured grids for Navier-Stokes calculations , 1993 .