MERGERS OF UNEQUAL-MASS GALAXIES: SUPERMASSIVE BLACK HOLE BINARY EVOLUTION AND STRUCTURE OF MERGER REMNANTS

Galaxy centers are residing places for supermassive black holes (SMBHs). Galaxy mergers bring SMBHs close together to form gravitationally bound binary systems, which, if able to coalesce in less than a Hubble time, would be one of the most promising sources of gravitational waves (GWs) for the Laser Interferometer Space Antenna. In spherical galaxy models, SMBH binaries stall at a separation of approximately 1 pc, leading to the 'final parsec problem' (FPP). On the other hand, it has been shown that merger-induced triaxiality of the remnant in equal-mass mergers is capable of supporting a constant supply of stars on the so-called centrophilic orbits that interact with the binary and thus avoid the FPP. In this paper, using a set of direct N-body simulations of mergers of initially spherically symmetric galaxies with different mass ratios, we show that the merger-induced triaxiality is also able to drive unequal-mass SMBH binaries to coalescence. The binary hardening rates are high and depend only weakly on the mass ratios of SMBHs for a wide range of mass ratios q. There is, however, an abrupt transition in the hardening rates for mergers with mass ratios somewhere between q {approx} 0.05 and 0.1, resulting from the monotonicmore » decrease of merger-induced triaxiality with mass ratio q, as the secondary galaxy becomes too small and light to significantly perturb the primary, i.e., the more massive one. The hardening rates are significantly higher for galaxies having steep cusps in comparison with those having shallow cups at centers. The evolution of the binary SMBH leads to relatively shallower inner slopes at the centers of the merger remnants. The stellar mass displaced by the SMBH binary on its way to coalescence is {approx}1-5 times the combined mass of binary SMBHs. The coalescence timescales for SMBH binary with mass {approx}10{sup 6} M{sub Sun} are less than 1 Gyr and for those at the upper end of SMBH masses 10{sup 9} M{sub Sun} are 1-2 Gyr for less eccentric binaries whereas they are less than 1 Gyr for highly eccentric binaries. SMBH binaries are thus expected to be promising sources of GWs at low and high redshifts.« less

[1]  Tod R. Lauer,et al.  The centers of early-type galaxies with HST. IV. Central parameter relations , 1996, astro-ph/9610055.

[2]  The ACS Virgo Cluster survey. VI. Isophotal analysis and the structure of early-type galaxies , 2006, astro-ph/0602297.

[3]  Pasadena,et al.  HIGH ANGULAR RESOLUTION INTEGRAL-FIELD SPECTROSCOPY OF THE GALAXY'S NUCLEAR CLUSTER: A MISSING STELLAR CUSP? , 2009, 0908.0311.

[4]  Rainer Spurzem,et al.  FAST COALESCENCE OF MASSIVE BLACK HOLE BINARIES FROM MERGERS OF GALACTIC NUCLEI: IMPLICATIONS FOR LOW-FREQUENCY GRAVITATIONAL-WAVE ASTROPHYSICS , 2011, 1102.4855.

[5]  D. Merritt,et al.  ORBITS AROUND BLACK HOLES IN TRIAXIAL NUCLEI , 2010, 1005.0040.

[6]  D. Merritt,et al.  LONG-TERM EVOLUTION OF MASSIVE BLACK HOLE BINARIES. IV. MERGERS OF GALAXIES WITH COLLISIONALLY RELAXED NUCLEI , 2011, 1107.4095.

[7]  Alberto Sesana,et al.  The imprint of massive black hole formation models on the LISA data stream , 2007, astro-ph/0701556.

[8]  Curt Cutler,et al.  LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy , 2003, gr-qc/0310125.

[9]  Hans-Walter Rix,et al.  On the Black Hole Mass-Bulge Mass Relation , 2004, astro-ph/0402376.

[10]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[11]  R. Wolf,et al.  Star distribution around a massive black hole in a globular cluster. II. Unequal star masses , 1977 .

[12]  D. Merritt,et al.  Performance Analysis of Direct N-Body Algorithms on Special-Purpose Supercomputers , 2006, astro-ph/0608125.

[13]  D. Merritt Mass Deficits, Stalling Radii, and the Merger Histories of Elliptical Galaxies , 2006, astro-ph/0603439.

[14]  D. Merritt,et al.  Orbital Structure of Triaxial Black Hole Nuclei , 2001 .

[15]  Harald Kuntschner,et al.  The SAURON project – IX. A kinematic classification for early‐type galaxies , 2007, astro-ph/0703531.

[16]  M. Colpi,et al.  GROWING MASSIVE BLACK HOLE PAIRS IN MINOR MERGERS OF DISK GALAXIES , 2010, 1002.1712.

[17]  A. Eckart,et al.  Composition of the galactic center star cluster. Population analysis from adaptive optics narrow ban , 2009, 0903.2135.

[18]  T. Lauer,et al.  DISSIPATION AND EXTRA LIGHT IN GALACTIC NUCLEI. III. “CORE” ELLIPTICALS AND “MISSING” LIGHT , 2008, 0806.2325.

[19]  M. Colpi,et al.  PAIRING OF SUPERMASSIVE BLACK HOLES IN UNEQUAL-MASS GALAXY MERGERS , 2008, 0811.0615.

[20]  Rainer Spurzem,et al.  N-Body Growth of a Bahcall-Wolf Cusp around a Black Hole , 2004, astro-ph/0406324.

[21]  Rainer Spurzem,et al.  Long-Term Evolution of Massive Black Hole Binaries. II. Binary Evolution in Low-Density Galaxies , 2005, astro-ph/0507260.

[22]  S. Aarseth,et al.  An efficient integration method for binaries in N-body simulations , 1998 .

[23]  T. Alexander,et al.  STRONG MASS SEGREGATION AROUND A MASSIVE BLACK HOLE , 2008, 0808.3150.

[24]  P. Armitage,et al.  Massive black hole binary mergers within subparsec scale gas discs , 2008, 0809.0311.

[25]  Richard A. Wolf,et al.  Star distribution around a massive black hole in a globular cluster , 1976 .

[26]  Rainer Spurzem,et al.  BINARY BLACK HOLE MERGER IN GALACTIC NUCLEI: POST-NEWTONIAN SIMULATIONS , 2008, 0812.2756.

[27]  Walter Dehnen,et al.  A family of potential–density pairs for spherical galaxies and bulges , 1993 .

[28]  R. Ekers,et al.  Tracing Black Hole Mergers Through Radio Lobe Morphology , 2002, Science.

[29]  Ralf Bender,et al.  A Proposed Revision of the Hubble Sequence for Elliptical Galaxies , 1996 .

[30]  P. Amaro-Seoane,et al.  ON STRONG MASS SEGREGATION AROUND A MASSIVE BLACK HOLE: IMPLICATIONS FOR LOWER-FREQUENCY GRAVITATIONAL-WAVE ASTROPHYSICS , 2009, 0910.3206.

[31]  S.Sridhar,et al.  Stellar dynamics around black holes in galactic nuclei , 1998, astro-ph/9811304.

[32]  A. Just,et al.  EFFICIENT MERGER OF BINARY SUPERMASSIVE BLACK HOLES IN MERGING GALAXIES , 2011, 1103.0272.

[33]  S. Hughes,et al.  Listening to the universe with gravitational-wave astronomy , 2002, astro-ph/0210481.

[34]  S. Shapiro,et al.  The distribution and consumption rate of stars around a massive, collapsed object , 1977 .

[35]  D. Merritt EVOLUTION OF NUCLEAR STAR CLUSTERS , 2008, 0802.3186.

[36]  Simon Portegies Zwart,et al.  SAPPORO: A way to turn your graphics cards into a GRAPE-6 , 2009, ArXiv.

[37]  P. C. Peters Gravitational Radiation and the Motion of Two Point Masses , 1964 .

[38]  Laura Ferrarese David Merritt A Fundamental Relation Between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[39]  L. Spitzer Dynamical evolution of globular clusters , 1987 .

[40]  T. Naab,et al.  The influence of gas on the structure of merger remnants , 2006, astro-ph/0605155.

[41]  Ralf Bender,et al.  STRUCTURE AND FORMATION OF ELLIPTICAL AND SPHEROIDAL GALAXIES , 2008, 0810.1681.

[42]  D. Merritt THE DISTRIBUTION OF STARS AND STELLAR REMNANTS AT THE GALACTIC CENTER , 2009, 0909.1318.

[43]  Hans-Peter Bischof,et al.  EFFICIENT MERGER OF BINARY SUPERMASSIVE BLACK HOLES IN NON- AXISYMMETRIC GALAXIES , 2006 .

[44]  M. Rees,et al.  Massive black hole binaries in active galactic nuclei , 1980, Nature.

[45]  C. Hummel,et al.  A massive binary black hole in 1928+738 ? , 1993 .

[46]  A. Sesana SELF CONSISTENT MODEL FOR THE EVOLUTION OF ECCENTRIC MASSIVE BLACK HOLE BINARIES IN STELLAR ENVIRONMENTS: IMPLICATIONS FOR GRAVITATIONAL WAVE OBSERVATIONS , 2010, 1006.0730.

[47]  D. Merritt Dynamics of galaxy cores and supermassive black holes. , 2006, Reports on progress in physics. Physical Society.

[48]  James Binney,et al.  Galactic Dynamics: Second Edition , 2008 .

[49]  D. Merritt,et al.  Long-Term Evolution of Massive Black Hole Binaries. III. Binary Evolution in Collisional Nuclei , 2007, 0705.2745.

[50]  T. Lauer,et al.  DISSIPATION AND EXTRA LIGHT IN GALACTIC NUCLEI. II. “CUSP” ELLIPTICALS , 2008, 0805.3533.

[51]  Alessia Gualandris,et al.  Ejection of Supermassive Black Holes from Galaxy Cores , 2007, 0708.0771.

[52]  Caltech,et al.  Long-Term Evolution of Massive Black Hole Binaries , 2002, astro-ph/0212459.

[53]  T. Ebisuzaki,et al.  Merging of Galaxies with Central Black Holes. I. Hierarchical Mergings of Equal-Mass Galaxies , 1996 .

[54]  Eccentricity of Supermassive Black Hole Binaries Coalescing from Gas-rich Mergers , 2005, astro-ph/0508493.

[55]  Qingjuan Yu Evolution of massive binary black holes , 2001, astro-ph/0109530.

[56]  Alister W. Graham,et al.  Core Depletion from Coalescing Supermassive Black Holes , 2004, astro-ph/0503177.

[57]  Gerald D. Quinlan The dynamical evolution of massive black hole binaries i , 1996 .

[58]  Junichiro Makino,et al.  Evolution of Massive Black Hole Binaries , 2003 .

[59]  Massive Black Hole Binary Evolution , 2004, astro-ph/0410364.

[60]  D. Merritt,et al.  Chaotic Loss Cones and Black Hole Fueling , 2004 .

[61]  T. Alexander,et al.  Massive Perturbers and the Efficient Merger of Binary Massive Black Holes , 2007, 0705.2123.

[62]  Laura Ferrarese,et al.  Supermassive Black Holes in Galactic Nuclei: Past, Present and Future Research , 2004, astro-ph/0411247.

[63]  Marta Volonteri,et al.  Formation of supermassive black holes , 2010, 1003.4404.