Robust sample average approximation

Sample average approximation (SAA) is a widely popular approach to data-driven decision-making under uncertainty. Under mild assumptions, SAA is both tractable and enjoys strong asymptotic performance guarantees. Similar guarantees, however, do not typically hold in finite samples. In this paper, we propose a modification of SAA, which we term Robust SAA, which retains SAA’s tractability and asymptotic properties and, additionally, enjoys strong finite-sample performance guarantees. The key to our method is linking SAA, distributionally robust optimization, and hypothesis testing of goodness-of-fit. Beyond Robust SAA, this connection provides a unified perspective enabling us to characterize the finite sample and asymptotic guarantees of various other data-driven procedures that are based upon distributionally robust optimization. This analysis provides insight into the practical performance of these various methods in real applications. We present examples from inventory management and portfolio allocation, and demonstrate numerically that our approach outperforms other data-driven approaches in these applications.

[1]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[2]  Ioana Popescu,et al.  Optimal Inequalities in Probability Theory: A Convex Optimization Approach , 2005, SIAM J. Optim..

[3]  R. C. Stapleton Handbooks in operations research and management science, vol. 9. Finance , 1997 .

[4]  J. Dupacová The minimax approach to stochastic programming and an illustrative application , 1987 .

[5]  Alexander Shapiro,et al.  The Sample Average Approximation Method for Stochastic Discrete Optimization , 2002, SIAM J. Optim..

[6]  Aharon Ben-Tal,et al.  Lectures on modern convex optimization , 1987 .

[7]  R. Wets,et al.  Designing approximation schemes for stochastic optimization problems, in particular for stochastic programs with recourse , 1986 .

[8]  A. E. Hoerl,et al.  Ridge Regression: Applications to Nonorthogonal Problems , 1970 .

[9]  R. D'Agostino,et al.  Goodness-of-Fit-Techniques , 1987 .

[10]  Yinyu Ye,et al.  Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems , 2010, Oper. Res..

[11]  G. E. Noether Note on the kolmogorov statistic in the discrete case , 1963 .

[12]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[13]  Ruiwei Jiang,et al.  Data-driven chance constrained stochastic program , 2015, Mathematical Programming.

[14]  S. Kullback,et al.  A lower bound for discrimination information in terms of variation (Corresp.) , 1967, IEEE Trans. Inf. Theory.

[15]  R. M. Dudley,et al.  Real Analysis and Probability , 1989 .

[16]  A. E. Hoerl,et al.  Ridge regression: biased estimation for nonorthogonal problems , 2000 .

[17]  Xuan Vinh Doan,et al.  Models for Minimax Stochastic Linear Optimization Problems with Risk Aversion , 2010, Math. Oper. Res..

[18]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[19]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[20]  R. Wets,et al.  Epi‐consistency of convex stochastic programs , 1991 .

[21]  Olivier Thas,et al.  Comparing Distributions , 2009 .

[22]  András Prékopa Static Stochastic Programming Models , 1995 .

[23]  Ralph B. D'Agostino,et al.  Goodness-of-Fit-Techniques , 2020 .

[24]  Peter W. Glynn,et al.  Likelihood robust optimization for data-driven problems , 2013, Computational Management Science.

[25]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[26]  A. Shapiro ON DUALITY THEORY OF CONIC LINEAR PROBLEMS , 2001 .

[27]  Herbert E. Scarf,et al.  A Min-Max Solution of an Inventory Problem , 1957 .

[28]  Ioana Popescu,et al.  Robust Mean-Covariance Solutions for Stochastic Optimization , 2007, Oper. Res..

[29]  J. Shanthikumar,et al.  Multivariate Stochastic Orders , 2007 .

[30]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[31]  G. Calafiore,et al.  On Distributionally Robust Chance-Constrained Linear Programs , 2006 .

[32]  David R. Cox,et al.  The Oxford Dictionary of Statistical Terms , 2006 .

[33]  Vishal Gupta,et al.  Data-driven robust optimization , 2013, Math. Program..

[34]  Güzin Bayraksan,et al.  Data-Driven Stochastic Programming Using Phi-Divergences , 2015 .

[35]  Tito Homem-de-Mello,et al.  Monte Carlo sampling-based methods for stochastic optimization , 2014 .

[36]  John M. Wilson,et al.  Introduction to Stochastic Programming , 1998, J. Oper. Res. Soc..

[37]  A. Tikhonov On the stability of inverse problems , 1943 .

[38]  Vladimir Vapnik,et al.  Principles of Risk Minimization for Learning Theory , 1991, NIPS.

[39]  Diego Klabjan,et al.  Robust Stochastic Lot-Sizing by Means of Histograms , 2013 .

[40]  George L. Nemhauser,et al.  Handbooks in operations research and management science , 1989 .

[41]  Stephen P. Boyd,et al.  Applications of second-order cone programming , 1998 .

[42]  Georgia Perakis,et al.  The Data-Driven Newsvendor Problem: New Bounds and Insights , 2015, Oper. Res..

[43]  Anja De Waegenaere,et al.  Robust Solutions of Optimization Problems Affected by Uncertain Probabilities , 2011, Manag. Sci..

[44]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[45]  J. Rice Mathematical Statistics and Data Analysis , 1988 .

[46]  M. Stephens Use of the Kolmogorov-Smirnov, Cramer-Von Mises and Related Statistics without Extensive Tables , 1970 .

[47]  Raman Uppal,et al.  A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms , 2009, Manag. Sci..

[48]  Daniel Kuhn,et al.  Distributionally Robust Convex Optimization , 2014, Oper. Res..

[49]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[50]  Andrew E. B. Lim,et al.  Conditional value-at-risk in portfolio optimization: Coherent but fragile , 2011, Oper. Res. Lett..

[51]  Marco Scarsini,et al.  Multivariate Convex Orderings, Dependence, and Stochastic Equality , 1998, Journal of Applied Probability.

[52]  Alison L Gibbs,et al.  On Choosing and Bounding Probability Metrics , 2002, math/0209021.

[53]  Assaf J. Zeevi,et al.  On a Data-Driven Method for Staffing Large Call Centers , 2009, Oper. Res..

[54]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[55]  M. Reed Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .

[56]  David P. Morton,et al.  Monte Carlo bounding techniques for determining solution quality in stochastic programs , 1999, Oper. Res. Lett..

[57]  N. Cristianini,et al.  Estimating the moments of a random vector with applications , 2003 .

[58]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[59]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .