Robust sample average approximation
暂无分享,去创建一个
[1] Arkadi Nemirovski,et al. Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.
[2] Ioana Popescu,et al. Optimal Inequalities in Probability Theory: A Convex Optimization Approach , 2005, SIAM J. Optim..
[3] R. C. Stapleton. Handbooks in operations research and management science, vol. 9. Finance , 1997 .
[4] J. Dupacová. The minimax approach to stochastic programming and an illustrative application , 1987 .
[5] Alexander Shapiro,et al. The Sample Average Approximation Method for Stochastic Discrete Optimization , 2002, SIAM J. Optim..
[6] Aharon Ben-Tal,et al. Lectures on modern convex optimization , 1987 .
[7] R. Wets,et al. Designing approximation schemes for stochastic optimization problems, in particular for stochastic programs with recourse , 1986 .
[8] A. E. Hoerl,et al. Ridge Regression: Applications to Nonorthogonal Problems , 1970 .
[9] R. D'Agostino,et al. Goodness-of-Fit-Techniques , 1987 .
[10] Yinyu Ye,et al. Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems , 2010, Oper. Res..
[11] G. E. Noether. Note on the kolmogorov statistic in the discrete case , 1963 .
[12] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[13] Ruiwei Jiang,et al. Data-driven chance constrained stochastic program , 2015, Mathematical Programming.
[14] S. Kullback,et al. A lower bound for discrimination information in terms of variation (Corresp.) , 1967, IEEE Trans. Inf. Theory.
[15] R. M. Dudley,et al. Real Analysis and Probability , 1989 .
[16] A. E. Hoerl,et al. Ridge regression: biased estimation for nonorthogonal problems , 2000 .
[17] Xuan Vinh Doan,et al. Models for Minimax Stochastic Linear Optimization Problems with Risk Aversion , 2010, Math. Oper. Res..
[18] Lorenz T. Biegler,et al. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..
[19] Dimitri P. Bertsekas,et al. Nonlinear Programming , 1997 .
[20] R. Wets,et al. Epi‐consistency of convex stochastic programs , 1991 .
[21] Olivier Thas,et al. Comparing Distributions , 2009 .
[22] András Prékopa. Static Stochastic Programming Models , 1995 .
[23] Ralph B. D'Agostino,et al. Goodness-of-Fit-Techniques , 2020 .
[24] Peter W. Glynn,et al. Likelihood robust optimization for data-driven problems , 2013, Computational Management Science.
[25] L. Lovász,et al. Geometric Algorithms and Combinatorial Optimization , 1981 .
[26] A. Shapiro. ON DUALITY THEORY OF CONIC LINEAR PROBLEMS , 2001 .
[27] Herbert E. Scarf,et al. A Min-Max Solution of an Inventory Problem , 1957 .
[28] Ioana Popescu,et al. Robust Mean-Covariance Solutions for Stochastic Optimization , 2007, Oper. Res..
[29] J. Shanthikumar,et al. Multivariate Stochastic Orders , 2007 .
[30] Eric R. Ziegel,et al. The Elements of Statistical Learning , 2003, Technometrics.
[31] G. Calafiore,et al. On Distributionally Robust Chance-Constrained Linear Programs , 2006 .
[32] David R. Cox,et al. The Oxford Dictionary of Statistical Terms , 2006 .
[33] Vishal Gupta,et al. Data-driven robust optimization , 2013, Math. Program..
[34] Güzin Bayraksan,et al. Data-Driven Stochastic Programming Using Phi-Divergences , 2015 .
[35] Tito Homem-de-Mello,et al. Monte Carlo sampling-based methods for stochastic optimization , 2014 .
[36] John M. Wilson,et al. Introduction to Stochastic Programming , 1998, J. Oper. Res. Soc..
[37] A. Tikhonov. On the stability of inverse problems , 1943 .
[38] Vladimir Vapnik,et al. Principles of Risk Minimization for Learning Theory , 1991, NIPS.
[39] Diego Klabjan,et al. Robust Stochastic Lot-Sizing by Means of Histograms , 2013 .
[40] George L. Nemhauser,et al. Handbooks in operations research and management science , 1989 .
[41] Stephen P. Boyd,et al. Applications of second-order cone programming , 1998 .
[42] Georgia Perakis,et al. The Data-Driven Newsvendor Problem: New Bounds and Insights , 2015, Oper. Res..
[43] Anja De Waegenaere,et al. Robust Solutions of Optimization Problems Affected by Uncertain Probabilities , 2011, Manag. Sci..
[44] Trevor Hastie,et al. The Elements of Statistical Learning , 2001 .
[45] J. Rice. Mathematical Statistics and Data Analysis , 1988 .
[46] M. Stephens. Use of the Kolmogorov-Smirnov, Cramer-Von Mises and Related Statistics without Extensive Tables , 1970 .
[47] Raman Uppal,et al. A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms , 2009, Manag. Sci..
[48] Daniel Kuhn,et al. Distributionally Robust Convex Optimization , 2014, Oper. Res..
[49] R. Rockafellar,et al. Optimization of conditional value-at risk , 2000 .
[50] Andrew E. B. Lim,et al. Conditional value-at-risk in portfolio optimization: Coherent but fragile , 2011, Oper. Res. Lett..
[51] Marco Scarsini,et al. Multivariate Convex Orderings, Dependence, and Stochastic Equality , 1998, Journal of Applied Probability.
[52] Alison L Gibbs,et al. On Choosing and Bounding Probability Metrics , 2002, math/0209021.
[53] Assaf J. Zeevi,et al. On a Data-Driven Method for Staffing Large Call Centers , 2009, Oper. Res..
[54] M. Kenward,et al. An Introduction to the Bootstrap , 2007 .
[55] M. Reed. Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .
[56] David P. Morton,et al. Monte Carlo bounding techniques for determining solution quality in stochastic programs , 1999, Oper. Res. Lett..
[57] N. Cristianini,et al. Estimating the moments of a random vector with applications , 2003 .
[58] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[59] R. Bass,et al. Review: P. Billingsley, Convergence of probability measures , 1971 .