UVM ScholarWorks UVM ScholarWorks

,

[1]  R. May Stability and Complexity in Model Ecosystems , 2019 .

[2]  Assembly Rules , 2019, The Nature of Plant Communities.

[3]  H. Berg Random Walks in Biology , 2018 .

[4]  Stefanie Widder,et al.  Signatures of ecological processes in microbial community time series , 2018, Microbiome.

[5]  José A Capitán,et al.  Coexistence of many species in random ecosystems , 2018, Nature Ecology & Evolution.

[6]  Thomas C. Flanagan,et al.  Cyclic population dynamics and density‐dependent intransitivity as pathways to coexistence between co‐occurring annual plants , 2018 .

[7]  N. Gotelli,et al.  Functional traits and environmental characteristics drive the degree of competitive intransitivity in European saltmarsh plant communities , 2018 .

[8]  T. Crowther,et al.  Intransitive competition is common across five major taxonomic groups and is driven by productivity, competitive rank and functional traits , 2018 .

[9]  Nadejda A. Soudzilovskaia,et al.  Asynchrony among local communities stabilises ecosystem function of metacommunities , 2017, Ecology letters.

[10]  Mauro Mobilia,et al.  Stochastic population dynamics in spatially extended predator–prey systems , 2017, 1708.07055.

[11]  J. Grilli,et al.  Higher-order interactions stabilize dynamics in competitive network models , 2017, Nature.

[12]  A. Magurran,et al.  Community-level regulation of temporal trends in biodiversity , 2017, Science Advances.

[13]  Peter B Adler,et al.  The effects of intransitive competition on coexistence. , 2017, Ecology letters.

[14]  Norman A. Bourg,et al.  Plant diversity increases with the strength of negative density dependence at the global scale , 2017, Science.

[15]  Daniel B. Stouffer,et al.  Intransitivity is infrequent and fails to promote annual plant coexistence without pairwise niche differences. , 2017, Ecology.

[16]  Giovanni Strona,et al.  Environmental change makes robust ecological networks fragile , 2016, Nature Communications.

[17]  Sebastian J Schreiber,et al.  How variation between individuals affects species coexistence. , 2016, Ecology letters.

[18]  Werner Ulrich,et al.  Intransitive competition is widespread in plant communities and maintains their species richness. , 2015, Ecology letters.

[19]  A. Maritan,et al.  Statistical mechanics of ecological systems: Neutral theory and beyond , 2015, 1506.01721.

[20]  Robert A Laird,et al.  Competitive intransitivity, population interaction structure, and strategy coexistence. , 2015, Journal of theoretical biology.

[21]  A. Maritan,et al.  Sample and population exponents of generalized Taylor’s law , 2014, Proceedings of the National Academy of Sciences.

[22]  Brian Dennis,et al.  Density-dependent state-space model for population-abundance data with unequal time intervals. , 2014, Ecology.

[23]  S. Hubbell,et al.  The case for ecological neutral theory. , 2012, Trends in ecology & evolution.

[24]  Kui Lin,et al.  Coexistence of nearly neutral species , 2012 .

[25]  S. Hubbell,et al.  Demographic trade-offs determine species abundance and diversity , 2012 .

[26]  Werner Ulrich,et al.  Statistical challenges in null model analysis , 2012 .

[27]  Si Tang,et al.  Stability criteria for complex ecosystems , 2011, Nature.

[28]  S. Allesina,et al.  A competitive network theory of species diversity , 2011, Proceedings of the National Academy of Sciences.

[29]  J. Vandermeer Intransitive loops in ecosystem models: From stable foci to heteroclinic cycles , 2011 .

[30]  James Rosindell,et al.  Unified neutral theory of biodiversity and biogeography , 2010, Scholarpedia.

[31]  F. Maestre,et al.  Do biotic interactions modulate ecosystem functioning along stress gradients? Insights from semi-arid plant and biological soil crust communities , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[32]  Robert M Dorazio,et al.  A new parameterization for estimating co-occurrence of interacting species. , 2010, Ecological applications : a publication of the Ecological Society of America.

[33]  Werner Ulrich,et al.  A meta-analysis of species-abundance distributions , 2010 .

[34]  J. Wootton,et al.  Using experimental indices to quantify the strength of species interactions , 2010 .

[35]  F. Maestre,et al.  Interactive Effects of Three Ecosystem Engineers on Infiltration in a Semi-Arid Mediterranean Grassland , 2010, Ecosystems.

[36]  Fernando T. Maestre,et al.  Biological soil crusts modulate nitrogen availability in semi-arid ecosystems: insights from a Mediterranean grassland , 2010, Plant and Soil.

[37]  Werner Ulrich,et al.  The empirical Bayes approach as a tool to identify non-random species associations , 2010, Oecologia.

[38]  F. Maestre,et al.  On the relationship between abiotic stress and co-occurrence patterns: an assessment at the community level using soil lichen communities and multiple stress gradients , 2009 .

[39]  P. Lester,et al.  Competitive assembly of South Pacific invasive ant communities , 2009, BMC Ecology.

[40]  B. Emerson,et al.  Phylogenetic analysis of community assembly and structure over space and time. , 2008, Trends in ecology & evolution.

[41]  Jonas Knape,et al.  ESTIMABILITY OF DENSITY DEPENDENCE IN MODELS OF TIME SERIES DATA. , 2008, Ecology.

[42]  Joshua Ladau,et al.  Validation of null model tests using Neyman–Pearson hypothesis testing theory , 2008, Theoretical Ecology.

[43]  J. Andrew Royle,et al.  Hierarchical Modeling and Inference in Ecology: The Analysis of Data from Populations, Metapopulations and Communities , 2008 .

[44]  M. Loreau,et al.  Species Synchrony and Its Drivers: Neutral and Nonneutral Community Dynamics in Fluctuating Environments , 2008, The American Naturalist.

[45]  A. Thomas,et al.  Carbon dioxide fluxes from cyanobacteria crusted soils in the Kalahari , 2008 .

[46]  C. M. Mutshinda,et al.  Species abundance dynamics under neutral assumptions: a Bayesian approach to the controversy , 2008 .

[47]  F. Maestre,et al.  Are soil lichen communities structured by biotic interactions? A null model analysis , 2008 .

[48]  N. Gotelli,et al.  Biodiversity enhances individual performance but does not affect survivorship in tropical trees. , 2008, Ecology letters.

[49]  Jordi Bascompte,et al.  Plant-Animal Mutualistic Networks: The Architecture of Biodiversity , 2007 .

[50]  Werner Ulrich,et al.  Disentangling community patterns of nestedness and species co‐occurrence , 2007 .

[51]  R. Dorazio On the choice of statistical models for estimating occurrence and extinction from animal surveys. , 2007, Ecology.

[52]  Marti J. Anderson,et al.  Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. , 2007, Ecology letters.

[53]  Werner Ulrich,et al.  Null model analysis of species nestedness patterns. , 2007, Ecology.

[54]  C. Hennig,et al.  Null model tests of clustering of species, negative co-occurrence patterns and nestedness in meta-communities. , 2007 .

[55]  R D Stevens,et al.  Compensatory dynamics are rare in natural ecological communities , 2007, Proceedings of the National Academy of Sciences.

[56]  Nils Blüthgen,et al.  Specialization, Constraints, and Conflicting Interests in Mutualistic Networks , 2007, Current Biology.

[57]  J. Belnap The potential roles of biological soil crusts in dryland hydrologic cycles , 2006 .

[58]  V. Lehsten,et al.  Null models for species co-occurrence patterns: assessing bias and minimum iteration number for the sequential swap , 2006 .

[59]  Brian J. McGill,et al.  Null Versus Neutral Models: What's The Difference? , 2006 .

[60]  S. Lele,et al.  ESTIMATING DENSITY DEPENDENCE, PROCESS NOISE, AND OBSERVATION ERROR , 2006 .

[61]  Robert A. Laird,et al.  Competitive Intransitivity Promotes Species Coexistence , 2006, The American Naturalist.

[62]  Robert P Freckleton,et al.  Census error and the detection of density dependence. , 2006, The Journal of animal ecology.

[63]  M. D. Weiser,et al.  Empirical evaluation of neutral theory. , 2006, Ecology.

[64]  C. Bradshaw,et al.  Strength of evidence for density dependence in abundance time series of 1198 species. , 2006, Ecology.

[65]  S. Connell,et al.  Predicting understorey structure from the presence and composition of canopies: an assembly rule for marine algae , 2006, Oecologia.

[66]  B. McGill,et al.  Community inertia of Quaternary small mammal assemblages in North America. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[67]  E. David Ford,et al.  A Primer of Ecological Statistics , 2005 .

[68]  Graham Bell,et al.  THE CO‐DISTRIBUTION OF SPECIES IN RELATION TO THE NEUTRAL THEORY OF COMMUNITY ECOLOGY , 2005 .

[69]  J. Drake Density-Dependent Demographic Variation Determines Extinction Rate of Experimental Populations , 2005, PLoS biology.

[70]  C. Lortie,et al.  LINKING PATTERNS AND PROCESSES IN ALPINE PLANT COMMUNITIES: A GLOBAL STUDY , 2005 .

[71]  W. Ulrich Species co-occurrences and neutral models: reassessing J. M. Diamond's assembly rules , 2004 .

[72]  Mercedes Pascual,et al.  Skeletons, noise and population growth: the end of an old debate? , 2004, Trends in ecology & evolution.

[73]  Jean-Pierre Gabriel,et al.  Phylogenetic constraints and adaptation explain food-web structure , 2004, Nature.

[74]  A. Porporato,et al.  Water pulses and biogeochemical cycles in arid and semiarid ecosystems , 2004, Oecologia.

[75]  Yongding Liu,et al.  The vertical microdistribution of cyanobacteria and green algae within desert crusts and the development of the algal crusts , 2003, Plant and Soil.

[76]  R. Felger,et al.  Biological Soil Crusts: Structure, Function, and Management , 2003, Ecological Studies.

[77]  T. Fukami,et al.  Productivity–biodiversity relationships depend on the history of community assembly , 2003, Nature.

[78]  M. Holyoak,et al.  Complex Population Dynamics: A Theoretical/Empirical Synthesis , 2003 .

[79]  S. Carpenter,et al.  ESTIMATING COMMUNITY STABILITY AND ECOLOGICAL INTERACTIONS FROM TIME‐SERIES DATA , 2003 .

[80]  J. Bascompte,et al.  Invariant properties in coevolutionary networks of plant-animal interactions , 2002 .

[81]  Campbell O. Webb,et al.  Phylogenies and Community Ecology , 2002 .

[82]  L. Sancho,et al.  Water distribution within terricolous lichens revealed by scanning electron microscopy and its relevance in soil crust ecology , 2002 .

[83]  Anita Sellstedt,et al.  Quantifying nitrogen-fixation in feather moss carpets of boreal forests , 2002, Nature.

[84]  S. Lavorel,et al.  Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail , 2002 .

[85]  David R. Bellwood,et al.  Assembly rules and functional groups at global biogeographical scales , 2002 .

[86]  Nicholas J. Gotelli,et al.  SPECIES CO‐OCCURRENCE: A META‐ANALYSIS OF J. M. DIAMOND'S ASSEMBLY RULES MODEL , 2002 .

[87]  T. Simons,et al.  Spatial autocorrelation and autoregressive models in ecology , 2002 .

[88]  A. Troumbis,et al.  The role of legumes as a component of biodiversity in a cross‐European study of grassland biomass nitrogen , 2002 .

[89]  C. Kuske,et al.  Comparative diversity and composition of cyanobacteria in three predominant soil crusts of the Colorado Plateau. , 2002, FEMS microbiology ecology.

[90]  Jayne Belnap,et al.  Nitrogen fixation in biological soil crusts from southeast Utah, USA , 2002, Biology and Fertility of Soils.

[91]  V. Jansen,et al.  Variability in interaction strength and implications for biodiversity , 2002 .

[92]  B T Grenfell,et al.  Noisy Clockwork: Time Series Analysis of Population Fluctuations in Animals , 2001, Science.

[93]  Nicholas J. Gotelli,et al.  Research frontiers in null model analysis , 2001 .

[94]  N. Gotelli Null model analysis of species co-occurrence patterns , 2000 .

[95]  William J. Sutherland,et al.  What Is the Allee Effect , 1999 .

[96]  Richard A. Brualdi,et al.  Nested species subsets, gaps, and discrepancy , 1999, Oecologia.

[97]  Potts,et al.  Can high tree species richness be explained by Hubbell’s null model? , 1998 .

[98]  P. Groffman,et al.  Nitrogen fixation in macro- and microphytic patches in the Negev desert , 1998 .

[99]  D. Doak,et al.  The Statistical Inevitability of Stability‐Diversity Relationships in Community Ecology , 1998, The American Naturalist.

[100]  A. W. Kemp,et al.  Randomization, Bootstrap and Monte Carlo Methods in Biology , 1997 .

[101]  N. Gotelli,et al.  Co-occurrence of Australian land birds : Diamond's assembly rules revisited , 1997 .

[102]  Kui Lin,et al.  THE EFFECTS OF COMPETITIVE ASYMMETRY ON THE RATE OF COMPETITIVE DISPLACEMENT : HOW ROBUST IS HUBBELL'S COMMUNITY DRIFT MODEL? , 1997 .

[103]  N. Gotelli,et al.  NULL MODELS IN ECOLOGY , 1996 .

[104]  David R. Fox,et al.  Tests for density dependence revisited , 1995, Oecologia.

[105]  P. Foley,et al.  Predicting Extinction Times from Environmental Stochasticity and Carrying Capacity , 1994 .

[106]  William W. Murdoch,et al.  POPULATION REGULATION IN THEORY AND PRACTICE , 1994 .

[107]  N. Gotelli,et al.  Assembly of avian mixed-species flocks in Amazonia. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[108]  K. Shrader-Frechette,et al.  Statistics, costs and rationality in ecological inference. , 1992, Trends in ecology & evolution.

[109]  Peter Turchin,et al.  Complex Dynamics in Ecological Time Series , 1992 .

[110]  R. Routledge,et al.  Taylor's power law re-examined , 1991 .

[111]  J. Gentle,et al.  Randomization and Monte Carlo Methods in Biology. , 1990 .

[112]  L. Stone,et al.  The checkerboard score and species distributions , 1990, Oecologia.

[113]  Charles M. Newman,et al.  Stochastic structure and nonlinear dynamics of food webs: qualitative stability in a Lotka-Volterra cascade model , 1990, Proceedings of the Royal Society of London. B. Biological Sciences.

[114]  S. Holbrook,et al.  Temporally Concordant Structure of a Fish Assemblage: Bound or Determined? , 1990, The American Naturalist.

[115]  Peter J. Taylor,et al.  The construction and turnover of complex community models having Generalized Lotka-Volterra dynamics , 1988 .

[116]  K. McGuinness Explaining patterns in abundances of organisms on boulders: the failure of 'natural experiments' , 1988 .

[117]  Stuart L. Pimm,et al.  The variability of population densities , 1988, Nature.

[118]  P. Rothery,et al.  The Detection of Density-Dependence from a Series of Annual Censuses. , 1987, Ecology.

[119]  Wirt Atmar,et al.  Nested subsets and the structure of insular mammalian faunas and archipelagos , 1986 .

[120]  Dolph Schluter,et al.  A Variance Test for Detecting Species Associations, with Some Example Applications , 1984 .

[121]  David W. Winkler,et al.  20. A Null Model for Null Models in Biogeography , 1984 .

[122]  S. Pimm The complexity and stability of ecosystems , 1984, Nature.

[123]  C. Toft,et al.  Detecting Community-Wide Patterns: Estimating Power Strengthens Statistical Inference , 1983, The American Naturalist.

[124]  D. W. Nelson,et al.  Total Carbon, Organic Carbon, and Organic Matter , 1983, SSSA Book Series.

[125]  P. Morin Predation, Competition, and the Composition of Larval Anuran Guilds , 1983 .

[126]  G. Grossman Dynamics and Organization of a Rocky Intertidal Fish Assemblage: The Persistence and Resilience of Taxocene Structure , 1982, The American Naturalist.

[127]  E. C. Pielou The Usefulness of Ecological Models: A Stock-Taking , 1981, The Quarterly Review of Biology.

[128]  G. Sugihara Minimal Community Structure: An Explanation of Species Abundance Patterns , 1980, The American Naturalist.

[129]  P. Nannipieri,et al.  Extraction of phosphatase, urease, proteases, organic carbon, and nitrogen from soil. , 1980 .

[130]  Daniel Simberloff,et al.  The Assembly of Species Communities: Chance or Competition? , 1979 .

[131]  Peter J. Wangersky,et al.  Lotka-Volterra Population Models , 1978 .

[132]  R. May,et al.  Nonlinear Aspects of Competition Between Three Species , 1975 .

[133]  R. Ricklefs,et al.  Competition and the structure of bird communities. , 1975, Monographs in population biology.

[134]  M. Gilpin Limit Cycles in Competition Communities , 1975, The American Naturalist.

[135]  W. Gams Soil enzymes , 1973, Netherlands Journal of Plant Pathology.

[136]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[137]  N. Mantel The detection of disease clustering and a generalized regression approach. , 1967, Cancer research.

[138]  N. S. Urquhart,et al.  Patterns in the Balance of Nature , 1966 .

[139]  L. R. Taylor,et al.  Aggregation, Variance and the Mean , 1961, Nature.

[140]  W. Ulrich,et al.  Competitive interactions change the pattern of species co‐occurrences under neutral dispersal , 2017 .

[141]  Werner Ulrich,et al.  A consumer's guide to nestedness analysis , 2009 .

[142]  Ford Ballantyne,et al.  The observed range for temporal mean‐variance scaling exponents can be explained by reproductive correlation , 2007 .

[143]  A. Solow,et al.  Measuring biological diversity , 2006, Environmental and Ecological Statistics.

[144]  Jim M Cushing,et al.  Nonlinear Stochastic Population Dynamics: The Flour Beetle Tribolium as an Effective Tool of Discovery , 2005 .

[145]  F. Ballantyne The upper limit for the exponent of Taylor’s power law is a consequence of deterministic population growth , 2005 .

[146]  Michael E. Gilpin,et al.  Examination of the “null” model of connor and simberloff for species co-occurrences on Islands , 2004, Oecologia.

[147]  Paul A. Keddy,et al.  Ecological assembly rules : perspectives, advances, retreats , 1999 .

[148]  Earl D. McCoy,et al.  Some Observations on the Use of Taxonomic Similarity in Large-Scale Biogeography , 1987 .

[149]  R. May Patterns of species abundance and diversity , 1975 .

[150]  M. Bulmer,et al.  The statistical analysis of density dependence. , 1975, Biometrics.