A Process Algebra for Supervisory Coordination Jos

Citation for published version (APA): Baeten, J. C. M., Beek, van, D. A., Hulst, van, A. C., & Markovski, J. (2011). A process algebra for supervisory coordination. In L. Aceto, & M. R. Mousavi (Eds.), Proceedings of the First International Workshop on Process Algebra and Coordination (PACO 2011, Reykjavik, Iceland, June 9, 2011) (pp. 36-55). (Electronic Proceedings in Theoretical Computer Science; Vol. 60). EPTCS. DOI: 10.4204/EPTCS.60.3

[1]  P. Ramadge,et al.  Supervisory control of a class of discrete event processes , 1987 .

[2]  G. Meyer,et al.  An algebra of discrete event processes , 1991 .

[3]  S. Balemi,et al.  Supervisory control of a rapid thermal multiprocessor , 1993, IEEE Trans. Autom. Control..

[4]  Mark A. Shayman,et al.  Nonblocking supervisory control of nondeterministic systems via prioritized synchronization , 1996, IEEE Trans. Autom. Control..

[5]  Bengt Lennartson,et al.  On non-deterministic supervisory control , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[6]  A. Overkamp Supervisory control using failure semantics and partial specifications , 1997 .

[7]  Stéphane Lafortune,et al.  Bisimulation, the Supervisory Control Problem and Strong Model Matching for Finite State Machines , 1998, Discret. Event Dyn. Syst..

[8]  Michael Heymann,et al.  Discrete-event control of nondeterministic systems , 1998 .

[9]  J. Rutten Coalgebra, concurrency, and control , 1999 .

[10]  Christos G. Cassandras,et al.  Introduction to Discrete Event Systems , 1999, The Kluwer International Series on Discrete Event Dynamic Systems.

[11]  Rob J. van Glabbeek,et al.  The Linear Time - Branching Time Spectrum I , 2001, Handbook of Process Algebra.

[12]  M. J-C.,et al.  Process algebra with propositional signals 1 , 2003 .

[13]  Ratnesh Kumar,et al.  Control of nondeterministic discrete-event systems for bisimulation equivalence , 2007, IEEE Transactions on Automatic Control.

[14]  Gordon D. Plotkin,et al.  A structural approach to operational semantics , 2004, J. Log. Algebraic Methods Program..

[15]  Walter Murray Wonham,et al.  Nonblocking supervisory control of state tree structures , 2005, IEEE Transactions on Automatic Control.

[16]  R. Kumar,et al.  Control of Nondeterministic Discrete Event Systems for Simulation Equivalence , 2007, IEEE Transactions on Automation Science and Engineering.

[17]  R. Kumar,et al.  Asynchronous implementation of synchronous discrete event control , 2008, 2008 9th International Workshop on Discrete Event Systems.

[18]  Paulo Tabuada,et al.  Controller synthesis for bisimulation equivalence , 2007, Syst. Control. Lett..

[19]  Jos C. M. Baeten,et al.  Process Algebra: Equational Theories of Communicating Processes , 2009 .

[20]  Harsh Beohar,et al.  A theory of desynchronisable closed loop system , 2010, ICE.

[21]  Tim Muller,et al.  Expressiveness modulo bisimilarity of regular expressions with parallel composition , 2010, Mathematical Structures in Computer Science.

[22]  Jasen Markovski,et al.  Coordination of resources using generalized state-based requirements , 2010, WODES.

[23]  Jos C. M. Baeten,et al.  A Process Algebra for Supervisory Coordination , 2011, PACO.