Optimizing fluid–structure interaction systems with immersogeometric analysis and surrogate modeling: Application to a hydraulic arresting gear

Abstract This work describes a fluid–structure interaction (FSI) design optimization framework and applies it to improving the structural performance of a water brake used to stop aircraft landing on short runways. Inside the water brake, a dissipative torque is exerted on a rotor through interactions between rotor blades and a surrounding fluid. We seek to optimize blade shape over a parameterized design space, to prevent potentially-damaging stress concentrations without compromising performance. To avoid excessive numbers of costly simulations while exploring the design space, we use a surrogate management framework that combines derivative-free pattern search optimization with automated construction of a low-fidelity surrogate model, requiring only a handful of high-fidelity FSI simulations. We avoid the difficult problem of generating fluid and structure meshes at new points in the design space by using immersogeometric FSI analysis. The structure is analyzed isogeometrically: its design geometry also serves as a computational mesh. This geometry is then immersed in an unfitted fluid mesh that does not depend on the structure’s design parameters. We use this framework to make significant improvements to a baseline design found in the literature. Specifically, there is a 35% reduction of von Mises stress variance and a 25% reduction of maximum of stress, while the resisting torque and mass of the optimized blades remain uncompromised.

[1]  Shawn C Shadden,et al.  Optimization of a Y-graft design for improved hepatic flow distribution in the fontan circulation. , 2013, Journal of biomechanical engineering.

[2]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[3]  Yuri Bazilevs,et al.  CHALLENGES AND DIRECTIONS IN COMPUTATIONAL FLUID–STRUCTURE INTERACTION , 2013 .

[4]  Tamal K. Dey,et al.  Delaunay Mesh Generation , 2012, Chapman and Hall / CRC computer and information science series.

[5]  Ya-Tien Chiu,et al.  Computational Fluid Dynamics Simulations of Hydraulic Energy Absorber , 1999 .

[6]  John E. Dennis,et al.  A framework for managing models in nonlinear optimization of computationally expensive functions , 1999 .

[7]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[8]  Thomas J. R. Hughes,et al.  Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation , 2014, Computational Mechanics.

[9]  Joe F. Thompson,et al.  Numerical grid generation: Foundations and applications , 1985 .

[10]  Yuri Bazilevs,et al.  Space–Time and ALE-VMS Techniques for Patient-Specific Cardiovascular Fluid–Structure Interaction Modeling , 2012 .

[11]  Giancarlo Sangalli,et al.  Variational Multiscale Analysis: the Fine-scale Green's Function, Projection, Optimization, Localization, and Stabilized Methods , 2007, SIAM J. Numer. Anal..

[12]  Joe Walsh,et al.  A comparison of techniques for geometry access related to mesh generation , 2004, Engineering with Computers.

[13]  Helio J. C. Barbosa,et al.  The finite element method with Lagrange multiplier on the boundary: circumventing the Babuscka-Brezzi condition , 1991 .

[14]  Timothy J. Gundert,et al.  Optimization of cardiovascular stent design using computational fluid dynamics. , 2012, Journal of biomechanical engineering.

[15]  Meng Wang,et al.  Optimal Aeroacoustic Shape Design Using the Surrogate Management Framework , 2003 .

[16]  Ernst Rank,et al.  The finite cell method for three-dimensional problems of solid mechanics , 2008 .

[17]  J. Dennis,et al.  Trailing-edge noise reduction using derivative-free optimization and large-eddy simulation , 2007, Journal of Fluid Mechanics.

[18]  Yuri Bazilevs,et al.  Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk , 2014 .

[19]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[20]  Yuri Bazilevs,et al.  Computational Fluid-Structure Interaction: Methods and Applications , 2013 .

[21]  Adarsh Krishnamurthy,et al.  Direct immersogeometric fluid flow analysis using B-rep CAD models , 2016, Comput. Aided Geom. Des..

[22]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[23]  Michael J Sullivan,et al.  Defense Acquisitions: Assessments of Selected Weapon Programs , 2015 .

[24]  Yuri Bazilevs,et al.  Fluid–structure interaction modeling of wind turbines: simulating the full machine , 2012, Computational Mechanics.

[25]  G. Hulbert,et al.  A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method , 2000 .

[26]  Yuri Bazilevs,et al.  An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. , 2015, Computer methods in applied mechanics and engineering.

[27]  R. Herzog,et al.  Algorithms for PDE‐constrained optimization , 2010 .

[28]  Tayfun E. Tezduyar,et al.  Computational Methods for Parachute Fluid–Structure Interactions , 2012 .

[29]  Ming-Chen Hsu,et al.  The tetrahedral finite cell method for fluids: Immersogeometric analysis of turbulent flow around complex geometries , 2016 .

[30]  Baskar Ganapathysubramanian,et al.  A framework for parametric design optimization using isogeometric analysis , 2017 .

[31]  A. Marsden Optimization in Cardiovascular Modeling , 2014 .

[32]  Yuri Bazilevs,et al.  ALE-VMS AND ST-VMS METHODS FOR COMPUTER MODELING OF WIND-TURBINE ROTOR AERODYNAMICS AND FLUID–STRUCTURE INTERACTION , 2012 .

[33]  Charles Audet,et al.  Mesh Adaptive Direct Search Algorithms for Constrained Optimization , 2006, SIAM J. Optim..

[34]  John A. Evans,et al.  Stability and Conservation Properties of Collocated Constraints in Immersogeometric Fluid-Thin Structure Interaction Analysis , 2015 .

[35]  John A. Evans,et al.  Immersogeometric cardiovascular fluid-structure interaction analysis with divergence-conforming B-splines. , 2017, Computer methods in applied mechanics and engineering.

[36]  Richard V. Parker Arrestment Considerations for the Space Shuttle , 1971 .

[37]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[38]  Yuri Bazilevs,et al.  Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models , 2015, Computational mechanics.

[39]  A. J. Booker,et al.  A rigorous framework for optimization of expensive functions by surrogates , 1998 .

[40]  Victor M. Calo,et al.  Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows , 2007 .

[41]  Yuri Bazilevs,et al.  Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines , 2012 .

[42]  Tayfun E. Tezduyar,et al.  Finite element methods for flow problems with moving boundaries and interfaces , 2001 .

[43]  Yuri Bazilevs,et al.  Aerodynamic and FSI Analysis of Wind Turbines with the ALE-VMS and ST-VMS Methods , 2014 .

[44]  Tayfun E. Tezduyar,et al.  FSI modeling of the reefed stages and disreefing of the Orion spacecraft parachutes , 2014 .

[45]  Michael L. Accorsi,et al.  Parachute fluid-structure interactions: 3-D computation , 2000 .

[46]  Ashraf El-Hamalawi,et al.  Mesh Generation – Application to Finite Elements , 2001 .

[47]  T. Hughes,et al.  Large Eddy Simulation and the variational multiscale method , 2000 .

[48]  Alison L. Marsden,et al.  A computational framework for derivative-free optimization of cardiovascular geometries , 2008 .

[49]  Tayfun E. Tezduyar,et al.  Sequentially-coupled space–time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV , 2014 .

[50]  Yuri Bazilevs,et al.  High-performance computing of wind turbine aerodynamics using isogeometric analysis , 2011 .

[51]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[52]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[53]  Sethuraman Sankaran,et al.  An efficient framework for optimization and parameter sensitivity analysis in arterial growth and remodeling computations. , 2013, Computer methods in applied mechanics and engineering.

[54]  Thomas J. R. Hughes,et al.  Large eddy simulation of turbulent channel flows by the variational multiscale method , 2001 .

[55]  Thomas J. R. Hughes,et al.  Explicit trace inequalities for isogeometric analysis and parametric hexahedral finite elements , 2013, Numerische Mathematik.

[56]  Josef Kiendl,et al.  Isogeometric Analysis and Shape Optimal Design of Shell Structures , 2011 .

[57]  Juan J. Alonso,et al.  Comparison of reduced- and full-space algorithms for PDE-constrained optimization , 2013 .

[58]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[59]  Bharat K. Soni,et al.  Handbook of Grid Generation , 1998 .

[60]  Stein K. F. Stoter,et al.  The non-symmetric Nitsche method for the parameter-free imposition of weak boundary and coupling conditions in immersed finite elements , 2016 .

[61]  Parviz Moin,et al.  Suppression of vortex-shedding noise via derivative-free shape optimization , 2004 .

[62]  R. Fletcher Practical Methods of Optimization , 1988 .

[63]  Roger Fletcher,et al.  Practical methods of optimization; (2nd ed.) , 1987 .

[64]  M. D. McKay,et al.  A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .

[65]  J. Tinsley Oden,et al.  Verification and validation in computational engineering and science: basic concepts , 2004 .

[66]  T. Tezduyar,et al.  Fluid–structure Interaction Modeling of Aneurysmal Conditions with High and Normal Blood Pressures , 2006 .

[67]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[68]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[69]  Yuri Bazilevs,et al.  Modeling of a hydraulic arresting gear using fluid-structure interaction and isogeometric analysis , 2017 .

[70]  Yongjie Jessica Zhang,et al.  Geometric Modeling and Mesh Generation from Scanned Images , 2016 .