Control of an Industrial Robot using Acceleration Feedback

A controller using acceleration feedback has been applied to a flexible robot for which the position and velocity of the load are not measured. It is shown that acceleration feedback allows an exact tracking of the motor position, irrespective of the non-linear flexibilities of the axes and of the measurement disturbances. This easy-to-tune algorithm whose main control parameters are the modal masses of the motor and load part, and only consists of a positive acceleration feedback plus a PD controller, has been validated on an industrial robot with orthogonal axes.

[1]  J. Y. S. Luh,et al.  Resolved-acceleration control of mechanical manipulators , 1980 .

[2]  G. Saridis,et al.  Robust compensation for a robotic manipulator , 1984 .

[3]  George N. Saridis,et al.  L-Q design of PID controllers for robot arms , 1985, IEEE J. Robotics Autom..

[4]  Kazuhiro Kosuge,et al.  Robust linearization and,control of robot arm using acceleration feedback , 1989, Proceedings. ICCON IEEE International Conference on Control and Applications.

[5]  George N. Saridis,et al.  Acceleration and torque feedback for robotic control: Experimental results , 1990, J. Field Robotics.

[6]  R.D. Lorenz,et al.  Design principles and implementation of acceleration feedback to improve performance of DC drives , 1990, Conference Record of the 1990 IEEE Industry Applications Society Annual Meeting.

[7]  M. Readman,et al.  Acceleration feedback for flexible joint robots , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[8]  R.D. Lorenz,et al.  Implementation of a DSP-based, acceleration feedback robot controller: practical issues and design limits , 1991, Conference Record of the 1991 IEEE Industry Applications Society Annual Meeting.

[9]  P.R. Belanger,et al.  A digital implementation of the acceleration feedback control law on a PUMA 560 manipulator , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[10]  H. Iseki,et al.  Basic consideration of vibration suppression and disturbance rejection control of n-inertia system using SFLAC (state feedback and load acceleration control) , 1993, Conference Record of the Power Conversion Conference - Yokohama 1993.

[11]  Stephen Yurkovich,et al.  Nonlinear control with acceleration feedback for a two-link flexible robot , 1993 .

[12]  B. de Jager,et al.  Acceleration assisted tracking control , 1994 .

[13]  L. Meirovitch Principles and techniques of vibrations , 1996 .

[14]  Ning Xi,et al.  Force regulation and contact transition control , 1996 .

[15]  Weiliang Xu,et al.  Joint acceleration feedback control for robots: analysis, sensing and experiments , 2000 .

[16]  Yusuf Altintas,et al.  High speed CNC system design. Part III: high speed tracking and contouring control of feed drives , 2001 .

[17]  Pierre-Jean Barre,et al.  Influence of High-Speed Machine Tool Control Parameters on the Contouring Accuracy. Application to Linear and Circular Interpolation , 2004, J. Intell. Robotic Syst..

[18]  Pierre-Jean Barre,et al.  Influence of a Jerk Controlled Movement Law on the Vibratory Behaviour of High-Dynamics Systems , 2005, J. Intell. Robotic Syst..