The gravitational wave background from cosmological compact binaries

We use a population synthesis approach to characterize, as a function of cosmic time, the extragalactic close binary population descended from stars of low to intermediate initial mass. The unresolved gravitational wave (GW) background due to these systems is calculated for the 0.1‐10 mHz frequency band of the planned Laser Interferometer Space Antenna (LISA). This background is found to be dominated by emission from close white dwarf‐white dwarf (WD‐ WD) pairs. The spectral shape can be understood in terms of some simple analytic arguments. To quantify the astrophysical uncertainties, we construct a range of evolutionary models which produce populations consistent with Galactic observations of close WD‐WD binaries. The models differ in binary evolution prescriptions as well as initial parameter distributions and cosmic star formation histories. We compare the resulting background spectra, the shapes of which are found to be insensitive to the model chosen, and different to those found recently by Schneider et al. From this set of models, we constrain the amplitude of the extragalactic

[1]  Simon F. Portegies Zwart,et al.  Population synthesis for double white dwarfs. I. Close detached systems. , 2001 .

[2]  R. Kennicutt The Rate of star formation in normal disk galaxies , 1983 .

[3]  M. Livio,et al.  COMMON ENVELOPES IN BINARY STAR EVOLUTION , 1993 .

[4]  Ronald E. Taam,et al.  Common Envelope Evolution of Massive Binary Stars , 2000 .

[5]  G. Nelemans,et al.  Population synthesis for double white dwarfs. II. Semi-detached systems: AM CVn stars , 2001, astro-ph/0101123.

[6]  V. Dhillon,et al.  Low-mass white dwarfs need friends: five new double-degenerate close binary stars , 1995 .

[7]  R. Ellis,et al.  The 2dF galaxy redshift survey: near-infrared galaxy luminosity functions , 2000, astro-ph/0012429.

[8]  P. Bender,et al.  Gravitational Radiation from Helium Cataclysmics , 2000 .

[9]  R. Smart,et al.  RX J0806.3+1527: A double degenerate binary with the shortest known orbital period (321s) , 2002, astro-ph/0203043.

[10]  B. Hansen,et al.  Cooling Models for Old White Dwarfs , 1999, astro-ph/9903025.

[11]  P. Bender,et al.  Gradual approach to coalescence for compact stars orbiting massive black holes , 1995 .

[12]  Turner,et al.  Gravitational radiation from first-order phase transitions. , 1994, Physical review. D, Particles and fields.

[13]  Cambridge,et al.  ∼ 4 and the Evolution of the Uv Luminosity Density at High Redshift , 2022 .

[14]  R. Jeffries On the initial-final mass relation and maximum mass of white dwarf progenitors , 1997 .

[15]  R. Webbink Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae , 1984 .

[16]  The fraction of double degenerates among DA white dwarfs , 1999, astro-ph/9901273.

[17]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[18]  The nature of high-redshift galaxies , 1998, astro-ph/9806228.

[19]  A. Fruchter,et al.  HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.

[20]  Simon F. Portegies Zwart,et al.  Low- frequency gravitational waves from cosmological compact binaries , 2000 .

[21]  Tomasz Bulik,et al.  A Comprehensive Study of Binary Compact Objects as Gravitational Wave Sources: Evolutionary Channels, Rates, and Physical Properties , 2001, astro-ph/0111452.

[22]  G. Giampieri,et al.  DETECTING AN ANISOTROPIC GRAVITATIONAL WAVE BACKGROUND WITH A SPACE-BORNE INTERFEROMETER , 1997 .

[23]  S. F. Portegies Zwart,et al.  The gravitational wave signal from the Galactic disk population of binaries containing two compact objects. , 2001, astro-ph/0105221.

[24]  T. Marsh Detached white-dwarf close-binary stars - CV's extended family , 1999, astro-ph/9906100.

[25]  G. Gilmore,et al.  The distribution of low-mass stars in the Galactic disc , 1993 .

[26]  M. Livio,et al.  The common envelope phase in the evolution of binary stars , 1988 .

[27]  M. Shara,et al.  White Dwarf Sequences in Dense Star Clusters , 2003, astro-ph/0302119.

[28]  I. Iben,et al.  Degenerate dwarf binaries as promising, detectable sources of gravitational radiation , 1987 .

[29]  Christopher A. Tout,et al.  Low- and intermediate-mass close binary evolution and the initial-final mass relation , 2000 .

[30]  Vassiliki Kalogera,et al.  Formation of Low-Mass X-Ray Binaries. II. Common Envelope Evolution of Primordial Binaries with Extreme Mass Ratios , 1997, astro-ph/9708223.

[31]  UK.,et al.  The mass ratio distribution of short-period double degenerate stars , 2002, astro-ph/0201411.

[32]  M. Turner Detectability of inflation-produced gravitational waves , 1996, astro-ph/9607066.

[33]  Christopher A. Tout,et al.  Rapid binary star evolution for N-body simulations and population synthesis , 1997 .

[34]  Gravitational Radiation From Cosmological Turbulence , 2001, astro-ph/0111483.

[35]  Evolution of binary stars and the effect of tides on binary populations , 2002, astro-ph/0201220.

[36]  R. Webbink,et al.  Gravitational radiation from the Galaxy , 1990 .

[37]  Pasadena,et al.  Gravitational waves from a compact star in a circular, inspiral orbit, in the equatorial plane of a massive, spinning black hole, as observed by LISA , 2000, gr-qc/0007074.

[38]  J. Mathews,et al.  Gravitational radiation from point masses in a Keplerian orbit , 1963 .

[39]  J. Armstrong,et al.  Discriminating a gravitational wave background from instrumental noise in the LISA detector , 2000 .