On a Modal λ-Calculus for S41 1This work is supported by NSF Grant CCR-9303383 and the Advanced Research Projects Agency under ARPA Order No. 8313.

Abstract We present λ→□, a concise formulation of a proof term calculus for the intuitionistic modal logic S4 that is well-suited for practical applications. We show that, with respect to provability, it is equivalent to other formulations in the literature, sketch a simple type checking algorithm, and prove subject reduction and the existence of canonical forms for well-typed terms. Applications include a new formulation of natural deduction for intuitionistic linear logic, modal logical frameworks, and a logical analysis of staged computation and binding-time analysis for functional languages [6].

[1]  Furio Honsell,et al.  A framework for defining logics , 1993, JACM.

[2]  S. Martini,et al.  A Computational Interpretation of Modal Proofs , 1996 .

[3]  Dov M. Gabbay,et al.  Extending the Curry-Howard interpretation to linear, relevant and other resource logics , 1992, Journal of Symbolic Logic.

[4]  Andrea Masini,et al.  2-Sequent Calculus: Intuitionism and Natural Deduction , 1993, J. Log. Comput..

[5]  F. Pfenning Logic programming in the LF logical framework , 1991 .

[6]  Andrea Masini,et al.  On the fine structure of the exponential rule , 1995 .

[7]  Samson Abramsky,et al.  Computational Interpretations of Linear Logic , 1993, Theor. Comput. Sci..

[8]  Nick Benton,et al.  A Term Calculus for Intuitionistic Linear Logic , 1993, TLCA.

[9]  Mario R. F. Benevides,et al.  A Constructive Presentation for the Modal Connective of Necessity (\Box) , 1992, J. Log. Comput..

[10]  J. Gallier On Girard's "Candidats de Reductibilité" , 1989 .

[11]  Frank Pfenning,et al.  A modal analysis of staged computation , 1996, POPL '96.

[12]  Robert Harper,et al.  Compiling polymorphism using intensional type analysis , 1995, POPL '95.

[13]  Flemming Nielson,et al.  Two-level functional languages , 1992, Cambridge tracts in theoretical computer science.

[14]  Anne Sjerp Troelstra Natural Deduction for Intuitionistic Linear Logic , 1995, Ann. Pure Appl. Log..

[15]  H.A.J.M. Schellinx,et al.  The noble art of linear decorating , 1994 .

[16]  Gopalan Nadathur,et al.  Uniform Proofs as a Foundation for Logic Programming , 1991, Ann. Pure Appl. Log..

[17]  Andrea Masini,et al.  2-Sequent Calculus: A Proof Theory of Modalities , 1992, Ann. Pure Appl. Log..