On minimally 2-connected graphs with generalized connectivity $$\kappa _{3}=2$$κ3=2

For $$S\subseteq G$$S⊆G, let $$\kappa (S)$$κ(S) denote the maximum number r of edge-disjoint trees $$T_1, T_2, \ldots , T_r$$T1,T2,…,Tr in G such that $$V(T_i)\cap V(T_j)=S$$V(Ti)∩V(Tj)=S for any $$i,j\in \{1,2,\ldots ,r\}$$i,j∈{1,2,…,r} and $$i\ne j$$i≠j. For every $$2\le k\le n$$2≤k≤n, the k-connectivity of G, denoted by $$\kappa _k(G)$$κk(G), is defined as $$\kappa _k(G)=\hbox {min}\{\kappa (S)| S\subseteq V(G)\ and\ |S|=k\}$$κk(G)=min{κ(S)|S⊆V(G)and|S|=k}. Clearly, $$\kappa _2(G)$$κ2(G) corresponds to the traditional connectivity of G. In this paper, we focus on the structure of minimally 2-connected graphs with $$\kappa _{3}=2$$κ3=2. Denote by $$\mathcal {H}$$H the set of minimally 2-connected graphs with $$\kappa _{3}=2$$κ3=2. Let $$\mathcal {B}\subseteq \mathcal {H}$$B⊆H and every graph in $$\mathcal {B}$$B is either $$K_{2,3}$$K2,3 or the graph obtained by subdividing each edge of a triangle-free 3-connected graph. We obtain that $$H\in \mathcal {H}$$H∈H if and only if $$H\in \mathcal {B}$$H∈B or H can be constructed from one or some graphs $$H_{1},\ldots ,H_{k}$$H1,…,Hk in $$\mathcal {B}$$B ($$k\ge 1$$k≥1) by applying some operations recursively.

[1]  J. A. Bondy,et al.  Graph Theory , 2008, Graduate Texts in Mathematics.

[2]  Yongtang Shi,et al.  The generalized 3-connectivity of random graphs , 2013 .

[3]  Xueliang Li,et al.  Sharp bounds for the generalized connectivity kappa3(G) , 2009, Discret. Math..

[4]  Ping Zhang,et al.  The tree connectivity of regular complete bipartite graphs , 2010 .

[5]  G. Chartrand,et al.  Rainbow trees in graphs and generalized connectivity , 2010 .

[6]  Xueliang Li,et al.  The minimal size of a graph with generalized connectivity κ3 = 2 , 2011, Australas. J Comb..

[7]  B. Bollobás,et al.  Extremal Graph Theory , 2013 .

[8]  Naveed A. Sherwani Algorithms for VLSI Physcial Design Automation , 1998 .

[9]  Michael Hager,et al.  Pendant tree-connectivity , 1985, J. Comb. Theory, Ser. B.

[10]  Naveed A. Sherwani,et al.  Algorithms for VLSI Physical Design Automation , 1999, Springer US.

[11]  Xueliang Li,et al.  A survey on the generalized connectivity of graphs , 2012, ArXiv.

[12]  Xueliang Li,et al.  Note on the hardness of generalized connectivity , 2012, J. Comb. Optim..

[13]  Wei Li,et al.  The generalized connectivity of complete bipartite graphs , 2010, Ars Comb..

[14]  Xueliang Li,et al.  Generalized Connectivity of Graphs , 2016 .

[15]  Yongtang Shi,et al.  The Generalized 3-Connectivity of Cayley Graphs on Symmetric Groups Generated by Trees and Cycles , 2017, Graphs Comb..

[16]  Michael Hager,et al.  Path-connectivity in graphs , 1986, Discret. Math..

[17]  H. Whitney Congruent Graphs and the Connectivity of Graphs , 1932 .