On the non-existence of linear perfect Lee codes: The Zhang-Ge condition and a new polynomial criterion

The Golomb-Welch conjecture (1968) states that there are no $e$-perfect Lee codes in $\mathbb{Z}^n$ for $n\geq 3$ and $e\geq 2$. This conjecture remains open even for linear codes. A recent result of Zhang and Ge establishes the non-existence of linear $e$-perfect Lee codes in $\mathbb{Z}^n$ for infinitely many dimensions $n$, for $e=3$ and $4$. In this paper we extend this result in two ways. First, using the non-existence criterion of Zhang and Ge together with a generalized version of Lucas' theorem we extend the above result for almost all $e$ (i.e. a subset of positive integers with density $1$). Namely, if $e$ contains a digit $1$ in its base-$3$ representation which is not in the unit place (e.g. $e=3,4$) there are no linear $e$-perfect Lee codes in $\mathbb{Z}^n$ for infinitely many dimensions $n$. Next, based on a family of polynomials (the $Q$-polynomials), we present a new criterion for the non-existence of certain lattice tilings. This criterion depends on a prime $p$ and a tile $B$. For $p=3$ and $B$ being a Lee ball we recover the criterion of Zhang and Ge.

[1]  Sylvain Gravier,et al.  On the Non-existence of 3-Dimensional Tiling in the Lee Metric , 1998, Eur. J. Comb..

[2]  Karel A. Post Nonexistence Theorems on Perfect Lee Codes over Large Alphabets , 1975, Inf. Control..

[3]  P. Horak Tilings in Lee metric , 2009, Eur. J. Comb..

[4]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[5]  Peter Horak,et al.  50 Years of the Golomb–Welch Conjecture , 2018, IEEE Transactions on Information Theory.

[6]  Antonio Campello,et al.  Non-Existence of Linear Perfect Lee Codes With Radius 2 for Infinitely Many Dimensions , 2018, IEEE Transactions on Information Theory.

[7]  Simon Špacapan,et al.  Nonexistence of face-to-face four-dimensional tilings in the Lee metric , 2007, Eur. J. Comb..

[8]  Kenneth S. Davis,et al.  Lucas' Theorem for Prime Powers , 1990, Eur. J. Comb..

[9]  S. Golomb,et al.  Perfect Codes in the Lee Metric and the Packing of Polyominoes , 1970 .

[10]  Tao Zhang,et al.  Perfect and Quasi-Perfect Codes Under the $l_{p}$ Metric , 2017, IEEE Transactions on Information Theory.

[11]  C. Y. Lee,et al.  Some properties of nonbinary error-correcting codes , 1958, IRE Trans. Inf. Theory.

[12]  Timo Lepistö A Modification of the Elias-Bound and Nontexistence Theorems for Perfect Codes in the Lee-Metric , 1981, Inf. Control..

[13]  Peter Horák,et al.  Diameter Perfect Lee Codes , 2012, IEEE Transactions on Information Theory.

[14]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[15]  Claudio Qureshi The set of dimensions for which there are no linear perfect 2-error-correcting Lee codes has positive density , 2018, ArXiv.

[16]  P. Horak On perfect Lee codes , 2009, Discret. Math..

[17]  Dongryul Kim Nonexistence of perfect 2-error-correcting Lee codes in certain dimensions , 2017, Eur. J. Comb..

[18]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[19]  Peter Horák,et al.  A new approach towards the Golomb-Welch conjecture , 2014, Eur. J. Comb..

[20]  Mircea Merca,et al.  Augmented monomials in terms of power sums , 2015, SpringerPlus.

[21]  A. Campello,et al.  Perfect codes in the lp metric , 2015, Eur. J. Comb..