Interaction between crack tip advancement and fluid flow in fracturing saturated porous media

We address stepwise crack tip advancement and pressure fluctuations, which have been observed in the field and experimentally in fracturing saturated porous media. Both fracturing due to mechanical loading and pressure driven fracture are considered. After presenting the experimental evidence and the different explanations for the phenomena put forward and mentioning briefly what has been obtained so far by published numerical and analytical methods we propose our explanation based on Biot’s theory. A short presentation of three methods able to simulate the observed phenomena namely the Central Force Model, the Standard Galerkin Finite Element Method SGFEM and extended finite element method XFEM follows. With the Central Force Model it is evidenced that already dry geomaterials break in an intermittent fashion and that the presence of a fluid affects the behavior more or less depending on the loading and boundary conditions. Examples dealing both with hydraulic fracturing and mechanical loading are shown. The conditions needed to reproduce the observed phenomena with FE models at macroscopic level are evidenced. They appear to be the adoption of a crack tip advancement/time step algorithm which interferes the least possible with the three interacting velocities, namely the crack tip advancement velocity on one side, the seepage velocity of the fluid in the domain and from the crack (leak-off), and the fluid velocity within the crack on the other side. Further the crack tip advancement algorithm must allow for reproducing jumps observed in the experiments.

[1]  S. Cox Faulting processes at high fluid pressures: An example of fault valve behavior from the Wattle Gully Fault, Victoria, Australia , 1995 .

[2]  Nils-Erik Wiberg,et al.  Implementation and adaptivity of a space-time finite element method for structural dynamics , 1998 .

[3]  George J. Moridis,et al.  Fracture Propagation, Fluid Flow, and Geomechanics of Water-Based Hydraulic Fracturing in Shale Gas Systems and Electromagnetic Geophysical Monitoring of Fluid Migration , 2014 .

[4]  A. Hansen,et al.  The Distribution of Simultaneous Fiber Failures in Fiber Bundles , 1992 .

[5]  Emmanuel M Detournay,et al.  Experimental validation of the tip asymptotics for a fluid-driven crack , 2008 .

[6]  H. Saunders,et al.  Advanced Fracture Mechanics , 1985 .

[7]  Emmanuel M Detournay,et al.  An implicit algorithm for the propagation of a hydraulic fracture with a fluid lag , 2007 .

[8]  Bernhard A. Schrefler,et al.  Avalanches in dry and saturated disordered media at fracture in shear and mixed mode scenarios , 2017 .

[9]  Luciano Simoni,et al.  Numerical difficulties and computational procedures for thermo-hydro-mechanical coupled problems of saturated porous media , 2008 .

[10]  Bernardo Cesare,et al.  Synmetamorphic veining: origin of andalusite‐bearing veins in the Vedrette di Ries contact aureole, Eastern Alps, Italy , 1994 .

[11]  B. Lenoach,et al.  The crack tip solution for hydraulic fracturing in a permeable solid , 1995 .

[12]  Luciano Simoni,et al.  Cohesive fracture mechanics for a multi‐phase porous medium , 2003 .

[13]  A Vespignani,et al.  Avalanches in breakdown and fracture processes. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  A. Bunger,et al.  Interface debonding driven by fluid injection in a cased and cemented wellbore: Modeling and experiments , 2013 .

[15]  Emmanuel M Detournay,et al.  Comparison between laboratory experiments and coupled simulations of saucer-shaped hydraulic fractures in homogeneous brittle-elastic solids , 2013 .

[16]  Peter Grassl,et al.  On a 2D hydro-mechanical lattice approach for modelling hydraulic fracture , 2014, 1411.7901.

[17]  Jean-François Molinari,et al.  Avalanches in dry and saturated disordered media at fracture. , 2016, Physical review. E.

[18]  Jmrj Jacques Huyghe,et al.  The enhanced local pressure model for the accurate analysis of fluid pressure driven fracture in porous materials , 2015 .

[19]  Jmrj Jacques Huyghe,et al.  Mode I crack propagation in hydrogels is step wise , 2013 .

[20]  B. Schrefler,et al.  The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media , 1998 .

[21]  David Amitrano,et al.  Failure as a critical phenomenon in a progressive damage model , 2010 .

[22]  Jihoon Kim,et al.  Development of the T+M coupled flow-geomechanical simulator to describe fracture propagation and coupled flow-thermal-geomechanical processes in tight/shale gas systems , 2013, Comput. Geosci..

[23]  Jmrj Jacques Huyghe,et al.  An investigation of the step-wise propagation of a mode-II fracture in a poroelastic medium , 2017 .

[24]  George J. Moridis,et al.  Numerical analysis of fracture propagation during hydraulic fracturing operations in shale gas systems , 2015 .

[25]  Benoît Carrier,et al.  Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model , 2012 .

[26]  J. Rice,et al.  Dilatancy, compaction, and slip instability of a fluid‐infiltrated fault , 1995 .

[27]  Rui Bao,et al.  A creep–fatigue crack growth model containing temperature and interactive effects , 2014 .

[28]  Philip G. Meredith,et al.  Seismic tremor in subduction zones: Rock physics evidence , 2009 .

[29]  O. C. Zienkiewicz,et al.  Adaptive techniques in the finite element method , 1988 .

[30]  N. C. Huang,et al.  Hydraulic fracturing of a saturated porous medium-I: General theory , 1985 .

[31]  T. K. Perkins,et al.  Widths of Hydraulic Fractures , 1961 .

[32]  Donald L. Turcotte,et al.  Can Damage Mechanics Explain Temporal Scaling Laws in Brittle Fracture and Seismicity? , 2006 .

[33]  Emmanuel M Detournay,et al.  Discrete element modeling of tool‐rock interaction II: rock indentation , 2013 .

[34]  Julien Réthoré,et al.  X-FEM a good candidate for energy conservation in simulation of brittle dynamic crack propagation , 2008 .

[35]  Jmrj Jacques Huyghe,et al.  A Partition of Unity-Based Model for Crack Nucleation and Propagation in Porous Media, Including Orthotropic Materials , 2015, Transport in Porous Media.

[36]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[37]  H. Herrmann,et al.  Statistical models for the fracture of disordered media. North‐Holland, 1990, 353 p., ISBN 0444 88551x (hardbound) US $ 92.25, 0444 885501 (paperback) US $ 41.00 , 1990 .

[38]  L. Ponson,et al.  Depinning transition in the failure of inhomogeneous brittle materials. , 2008, Physical review letters.

[39]  J. M. Huyghe,et al.  Propagating Cracks in Saturated Ionized Porous Media , 2011 .

[40]  Thomas J. Boone,et al.  A numerical procedure for simulation of hydraulically-driven fracture propagation in poroelastic media , 1990 .

[41]  A. Khoei,et al.  An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model , 2013 .

[42]  C. Miehe,et al.  Minimization principles for the coupled problem of Darcy–Biot-type fluid transport in porous media linked to phase field modeling of fracture , 2015 .

[43]  N. C. Huang,et al.  Hydraulic fracturing of a saturated porous medium-II: Special cases , 1985 .

[44]  A. Khoei,et al.  Hydro‐mechanical modeling of cohesive crack propagation in multiphase porous media using the extended finite element method , 2013 .

[45]  Emmanuel M Detournay,et al.  Multiscale tip asymptotics in hydraulic fracture with leak-off , 2011, Journal of Fluid Mechanics.

[46]  Emmanuel M Detournay,et al.  Plane strain analysis of a stationary hydraulic fracture in a poroelastic medium , 1991 .

[47]  Howard A. Stone,et al.  Experimental study on penny-shaped fluid-driven cracks in an elastic matrix , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[48]  Ernst Rank,et al.  On the importance of the discrete maximum principle in transient analysis using finite element methods , 1983 .

[49]  M. Wheeler,et al.  An augmented-Lagrangian method for the phase-field approach for pressurized fractures , 2014 .

[50]  Mary F. Wheeler,et al.  A Phase-Field Method for Propagating Fluid-Filled Fractures Coupled to a Surrounding Porous Medium , 2015, Multiscale Model. Simul..

[51]  Julien Réthoré,et al.  A two‐scale approach for fluid flow in fractured porous media , 2006 .

[52]  W. J. Phillips,et al.  Hydraulic fracturing and mineralization , 1972, Journal of the Geological Society.

[53]  Alessandro Vespignani,et al.  Plasticity and avalanche behaviour in microfracturing phenomena , 1997, Nature.

[54]  Ahmed Alzahabi,et al.  Analysis of Fracturing Pressure Data in Heterogeneous Shale Formations , 2014 .

[55]  S. H. Advani,et al.  Consequences of Fluid Lag in Three-Dimensional Hydraulic Fractures , 1997 .

[56]  Emmanuel M Detournay,et al.  The Tip Region of a Fluid-Driven Fracture in an Elastic Medium , 2000 .

[57]  T.P.Y. Lhomme,et al.  Initiation of Hydraulic Fractures in Natural Sandstones , 2005 .

[58]  Mark O Robbins,et al.  Avalanches in strained amorphous solids: does inertia destroy critical behavior? , 2012, Physical review letters.

[59]  Herrmann,et al.  Simulations of pressure fluctuations and acoustic emission in hydraulic fracturing. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[60]  Bernhard A. Schrefler,et al.  Mesh adaptation and transfer schemes for discrete fracture propagation in porous materials , 2007 .

[61]  de R René Borst,et al.  Two-Dimensional Mode I Crack Propagation in Saturated Ionized Porous Media Using Partition of Unity Finite Elements , 2013 .

[62]  Bernhard A. Schrefler,et al.  A method for 3-D hydraulic fracturing simulation , 2012, International Journal of Fracture.

[63]  B. Schrefler,et al.  Hydraulic fracturing and its peculiarities , 2014 .

[64]  Emmanuel M Detournay,et al.  The near-tip region of a fluid-driven fracture propagating in a permeable elastic solid , 2003, Journal of Fluid Mechanics.

[65]  Hans Albert Richard,et al.  Fatigue crack growth under variable amplitude loading Part II: analytical and numerical investigations , 2006 .

[66]  Michael B. Smith,et al.  Interpretation of Fracturing Pressures , 1981 .

[67]  Bernhard A. Schrefler,et al.  NUMERICAL PROCEDURE FOR DISCRETE FRACTURE PROPAGATION IN POROUS MATERIALS , 2004 .

[68]  Jose Adachi,et al.  Computer simulation of hydraulic fractures , 2007 .

[69]  Michael P. Cleary,et al.  Moving singularities in elasto-diffusive solids with applications to fracture propagation , 1978 .

[70]  L. Simoni,et al.  An improved procedure for 2D unstructured Delaunay mesh generation , 2003 .

[71]  J. Rice,et al.  Some basic stress diffusion solutions for fluid‐saturated elastic porous media with compressible constituents , 1976 .

[72]  Bernhard A. Schrefler,et al.  On adaptive refinement techniques in multi-field problems including cohesive fracture , 2006 .

[73]  Richard H. Sibson,et al.  Crustal stress, faulting and fluid flow , 1994, Geological Society, London, Special Publications.