On H-irregularity strengths of G-amalgamation of graphs

A simple graph G=(V(G),E(G)) admits an H-covering if every edge in E(G) belongs at least to one subgraph of G isomorphic to a given graph H. Then the graph G admitting H-covering admits an H-irregular total k-labeling f: V(G) U E(G) \to {1, 2, ..., k} if for every two different subgraphs H' and H'' isomorphic to H there is $wt_{f}(H') \neq wt_{f}(H'')$, where $wt_{f}(H)= \sum \limits_{v\in V(H)} f(v) + \sum \limits_{e \in E(H)} f(e)$ is the associated H-weight. The minimum k for which the graph G has an H-irregular total k-labeling is called the total H-irregularity strength of the graph G. In this paper, we obtain the precise value of the total H-irregularity strength of G-amalgamation of graphs.

[1]  Stanislav Jendrol',et al.  On irregular total labellings , 2007, Discret. Math..

[2]  Stanislav Jendrol',et al.  Total Edge Irregularity Strength of Complete Graphs and Complete Bipartite Graphs , 2007, Electron. Notes Discret. Math..

[3]  Andrea Semanicová-Fenovcíková,et al.  On H-Irregularity Strength Of Graphs , 2017, Discuss. Math. Graph Theory.

[5]  Muhammad Kamran Siddiqui,et al.  On Edge Irregular Total Labeling of Categorical Product of Two Cycles , 2013, Theory of Computing Systems.

[6]  Felix Lazebnik,et al.  Irregularity strength of dense graphs , 2008, J. Graph Theory.

[7]  Jakub Przybylo,et al.  A new upper bound for the total vertex irregularity strength of graphs , 2009, Discret. Math..

[8]  Dieter Rautenbach,et al.  On a conjecture about edge irregular total labelings , 2008, J. Graph Theory.

[9]  Eberhard Triesch,et al.  Irregular Assignments of Trees and Forests , 1990, SIAM J. Discret. Math..

[10]  Jakub Przybylo Linear Bound on the Irregularity Strength and the Total Vertex Irregularity Strength of Graphs , 2009, SIAM J. Discret. Math..

[11]  Andrea Semanicová-Fenovcíková,et al.  On vertex and edge H-irregularity strengths of graphs , 2016, Discret. Math. Algorithms Appl..

[12]  Florian Pfender,et al.  A New Upper Bound for the Irregularity Strength of Graphs , 2011, SIAM J. Discret. Math..

[13]  Jenö Lehel,et al.  The irregularity strength of tP3 , 1991, Discret. Math..

[14]  Jakub Przybylo,et al.  Total Vertex Irregularity Strength of Dense Graphs , 2014, J. Graph Theory.

[15]  Ali Ahmad,et al.  On edge irregularity strength of graphs , 2014, Appl. Math. Comput..

[16]  Khandoker Mohammed Mominul Haque Irregular Total Labellings of Generalized Petersen Graphs , 2011, Theory of Computing Systems.

[17]  Tom Bohman,et al.  On the irregularity strength of trees , 2004, J. Graph Theory.

[18]  Stanislav Jendrol',et al.  Total edge irregularity strength of trees , 2006, Discuss. Math. Graph Theory.

[19]  Stanislav Jendrol',et al.  Total edge irregularity strength of complete graphs and complete bipartite graphs , 2010, Discret. Math..

[20]  Ali Ahmad,et al.  Total edge irregularity strength of a categorical product of two paths , 2014, Ars Comb..

[21]  Muhammad Kamran Siddiqui,et al.  Total edge irregularity strength of generalized prism , 2014, Appl. Math. Comput..