Heterozygosity and relationship in regularly subdivided populations.

Abstract The problems about regularly subdivided populations (with either finite or infinite number of subdivisions) may be unified by using Fourier or Laplace transforms. It is shown that some general theorems give (in unidimensional and in bidimensional cases) approximate values of: 1. 1. the rate of decrease of heterozygosity when there are no mutations. 2. 2. the rate of decrease of kinship as a function of distance, in the asymptotic stationary situation, when there are mutations towards an allele already existing or towards a new allele. When σ 2 , variance of migration in some direction, is sufficiently large with respect to number of subdivisions, it is shown that the population behaves as a wholly panmictic one.

[1]  G. Malécot Identical loci and relationship , 1967 .

[2]  G. Malécot,et al.  Les mathématiques de l'hérédité , 1948 .

[3]  G. Malécot Génétique des populations naturelles dans le cas d'un seul locus. II. – Étude du coefficient de parenté , 1972, Annales de génétique et de sélection animale.

[4]  G. Malécot Génétique des populations diploïdes naturelles dans le cas d'un seul locus. I. - Évolution de la fréquence d'un gène. Étude des variances et des covariances , 1971, Annales de génétique et de sélection animale.

[5]  Consanguinité panmictique et consanguinité systématique (Coefficients de wright et de malécot) , 1969, Annales de génétique et de sélection animale.

[6]  S. Wright THE INTERPRETATION OF POPULATION STRUCTURE BY F‐STATISTICS WITH SPECIAL REGARD TO SYSTEMS OF MATING , 1965 .

[7]  M. Kimura,et al.  The Stepping Stone Model of Population Structure and the Decrease of Genetic Correlation with Distance. , 1964, Genetics.

[8]  G. Malécot,et al.  The mathematics of heredity , 1948 .

[9]  Gillois La relation d'identite en genetique , 1966 .

[10]  T. Maruyama On the rate of decrease of heterozygosity in circular stepping stone models of populations. , 1970, Theoretical population biology.

[11]  N. Yasuda The genetical structure of northeastern Brazil , 1966 .

[12]  L. Tabah,et al.  Malecot Gustave. — Quelques schémas probabilistes sur la variabilité des populations naturelles , 1951 .

[13]  T. Maruyama Rate of decrease of genetic variability in a two-dimensional continuous population of finite size. , 1972, Genetics.

[14]  G. Malécot,et al.  Génétique des populations diploïdes naturelles dans le cas d'un seul locus. III. – Parenté, mutations et migration , 1973, Annales de génétique et de sélection animale.

[15]  D. L. Harris,et al.  GENOTYPIC COVARIANCES BETWEEN INBRED RELATIVES. , 1964, Genetics.