Signal features of the atherosclerotic plaque at 3.0 Tesla versus 1.5 Tesla: Impact on automatic classification

To investigate the impact of different field strengths on determining plaque composition with an automatic classifier.

[1]  B. Wyman,et al.  Carotid plaque morphology and composition: initial comparison between 1.5- and 3.0-T magnetic field strengths. , 2008, Radiology.

[2]  Fei Liu,et al.  Magnetic Resonance Imaging of Carotid Atherosclerosis: Plaque Analysis , 2007, Topics in magnetic resonance imaging : TMRI.

[3]  Brian K Rutt,et al.  Carotid plaque classification: Defining the certainty with which plaque components can be differentiated , 2007, Magnetic resonance in medicine.

[4]  Matthias Stuber,et al.  Assessment of the carotid artery by MRI at 3T: A study on reproducibility , 2007, Journal of magnetic resonance imaging : JMRI.

[5]  C. Yuan,et al.  Comparison of symptomatic and asymptomatic atherosclerotic carotid plaque features with in vivo MR imaging. , 2006, Radiology.

[6]  M. McConnell,et al.  Multicontrast black‐blood MRI of carotid arteries: Comparison between 1.5 and 3 tesla magnetic field strengths , 2006, Journal of magnetic resonance imaging : JMRI.

[7]  Chun Yuan,et al.  Automated in vivo segmentation of carotid plaque MRI with Morphology‐Enhanced probability maps , 2006, Magnetic resonance in medicine.

[8]  Chun Yuan,et al.  Association Between Carotid Plaque Characteristics and Subsequent Ischemic Cerebrovascular Events: A Prospective Assessment With MRI—Initial Results , 2006, Stroke.

[9]  Chun Yuan,et al.  In Vivo Quantitative Measurement of Intact Fibrous Cap and Lipid-Rich Necrotic Core Size in Atherosclerotic Carotid Plaque: Comparison of High-Resolution, Contrast-Enhanced Magnetic Resonance Imaging and Histology , 2005, Circulation.

[10]  Aloke V. Finn,et al.  Atherosclerotic Plaque Progression and Vulnerability to Rupture: Angiogenesis as a Source of Intraplaque Hemorrhage , 2005, Arteriosclerosis, thrombosis, and vascular biology.

[11]  Chun Yuan,et al.  Presence of Intraplaque Hemorrhage Stimulates Progression of Carotid Atherosclerotic Plaques: A High-Resolution Magnetic Resonance Imaging Study , 2005, Circulation.

[12]  Alfons G H Kessels,et al.  Assessment of human atherosclerotic carotid plaque components with multisequence MR imaging: initial experience. , 2005, Radiology.

[13]  C. Yuan,et al.  Quantitative Evaluation of Carotid Plaque Composition by In Vivo MRI , 2004, Arteriosclerosis, thrombosis, and vascular biology.

[14]  Peter J. Kirkpatrick,et al.  MRI-derived measurements of fibrous-cap and lipid-core thickness: the potential for identifying vulnerable carotid plaques in vivo , 2004, Neuroradiology.

[15]  Alfons G H Kessels,et al.  In vivo detection of hemorrhage in human atherosclerotic plaques with magnetic resonance imaging , 2004, Journal of magnetic resonance imaging : JMRI.

[16]  Chun Yuan,et al.  Hemorrhage in the Atherosclerotic Carotid Plaque: A High-Resolution MRI Study , 2004, Stroke.

[17]  W. Heindel,et al.  Sensitivity of T2-weighted FSE sequences towards physiological iron depositions in normal brains at 1.5 and 3.0 T , 2004, European Radiology.

[18]  Chun Yuan,et al.  Accuracy and uniqueness of three in vivo measurements of atherosclerotic carotid plaque morphology with black blood MRI , 2003, Magnetic resonance in medicine.

[19]  Anne L. Martel,et al.  Characterization of Complicated Carotid Plaque With Magnetic Resonance Direct Thrombus Imaging in Patients With Cerebral Ischemia , 2003, Circulation.

[20]  Anne L. Martel,et al.  Prevalence of Complicated Carotid Atheroma as Detected by Magnetic Resonance Direct Thrombus Imaging in Patients With Suspected Carotid Artery Stenosis and Previous Acute Cerebral Ischemia , 2003, Circulation.

[21]  Chun Yuan,et al.  Multislice double inversion‐recovery black‐blood imaging with simultaneous slice reinversion , 2003, Journal of magnetic resonance imaging : JMRI.

[22]  Chun Yuan,et al.  In vivo accuracy of multisequence MR imaging for identifying unstable fibrous caps in advanced human carotid plaques , 2003, Journal of magnetic resonance imaging : JMRI.

[23]  Chun Yuan,et al.  T1‐insensitive flow suppression using quadruple inversion‐recovery , 2002, Magnetic resonance in medicine.

[24]  W S Kerwin,et al.  In Vivo Accuracy of Multispectral Magnetic Resonance Imaging for Identifying Lipid-Rich Necrotic Cores and Intraplaque Hemorrhage in Advanced Human Carotid Plaques , 2001, Circulation.

[25]  W D Wagner,et al.  A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. , 1994, Arteriosclerosis and thrombosis : a journal of vascular biology.

[26]  B. Wyman,et al.  Carotid Plaque Morphology and Composition: Initial Comparison , 2008 .

[27]  K. Iihara,et al.  ORIGINAL RESEARCH Association between Signal Hyperintensity on T1-Weighted MR Imaging of Carotid Plaques and Ipsilateral Ischemic Events , 2007 .

[28]  C Yuan,et al.  Surface coil phased arrays for high‐resolution imaging of the carotid arteries , 1996, Journal of magnetic resonance imaging : JMRI.