MODEL-BASED AND DATA DRIVEN FAULT DIAGNOSIS METHODS WITH APPLICATIONS TO PROCESS MONITORING

[1]  Bhavik R. Bakshi,et al.  Multiscale SPC using wavelets: Theoretical analysis and properties , 2003 .

[2]  Raghunathan Rengaswamy,et al.  A review of process fault detection and diagnosis: Part III: Process history based methods , 2003, Comput. Chem. Eng..

[3]  Raghunathan Rengaswamy,et al.  A review of process fault detection and diagnosis: Part II: Qualitative models and search strategies , 2003, Comput. Chem. Eng..

[4]  Raghunathan Rengaswamy,et al.  A review of process fault detection and diagnosis: Part I: Quantitative model-based methods , 2003, Comput. Chem. Eng..

[5]  X. Wang,et al.  Qualitative/quantitative simulation of process temporal behavior using clustered fuzzy digraphs , 2001 .

[6]  Jose A. Romagnoli,et al.  Dynamic probabilistic model-based expert system for fault diagnosis , 2000 .

[7]  Wei Lin,et al.  Fault detection and diagnosis of rotating machinery , 2000, IEEE Trans. Ind. Electron..

[8]  Raghunathan Rengaswamy,et al.  A fast training neural network and its updation for incipient fault detection and diagnosis , 2000 .

[9]  Wang Haiqing,et al.  Statistical process monitoring with measured data corrupted by noise and gross error , 2000, Proceedings of the 3rd World Congress on Intelligent Control and Automation (Cat. No.00EX393).

[10]  David J. Sandoz,et al.  The application of principal component analysis and kernel density estimation to enhance process monitoring , 2000 .

[11]  S. Qin,et al.  Selection of the Number of Principal Components: The Variance of the Reconstruction Error Criterion with a Comparison to Other Methods† , 1999 .

[12]  C. McGreavy,et al.  Application of wavelets and neural networks to diagnostic system development, 2, an integrated framework and its application , 1999 .

[13]  C. McGreavy,et al.  Application of wavelets and neural networks to diagnostic system development , 1999 .

[14]  Marios M. Polycarpou,et al.  Robust fault diagnosis of state and sensor faults in nonlinear multivariable systems , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[15]  Jean-Philippe Steyer,et al.  A fuzzy logic based diagnosis system for the on-line supervision of an anaerobic digestor pilot-plant , 1999 .

[16]  S.I. Shah,et al.  Dynamic process monitoring using multiscale PCA , 1999, Engineering Solutions for the Next Millennium. 1999 IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.99TH8411).

[17]  Brian M. Sadler,et al.  Analysis of Multiscale Products for Step Detection and Estimation , 1999, IEEE Trans. Inf. Theory.

[18]  Jie Chen,et al.  Robust Model-Based Fault Diagnosis for Dynamic Systems , 1998, The International Series on Asian Studies in Computer and Information Science.

[19]  John F. MacGregor,et al.  Adaptive batch monitoring using hierarchical PCA , 1998 .

[20]  B. Bakshi Multiscale PCA with application to multivariate statistical process monitoring , 1998 .

[21]  Venkat Venkatasubramanian,et al.  A B-spline based method for data compression, process monitoring and diagnosis , 1998 .

[22]  S. Qin Recursive PLS algorithms for adaptive data modeling , 1998 .

[23]  P. Frank,et al.  Survey of robust residual generation and evaluation methods in observer-based fault detection systems , 1997 .

[24]  Kenneth A. Loparo,et al.  A neural-network approach to fault detection and diagnosis in industrial processes , 1997, IEEE Trans. Control. Syst. Technol..

[25]  A. Negiz,et al.  Statistical monitoring of multivariable dynamic processes with state-space models , 1997 .

[26]  Venkat Venkatasubramanian,et al.  A wavelet theory-based adaptive trend analysis system for process monitoring and diagnosis , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[27]  Barry M. Wise,et al.  Development and Benchmarking of Multivariate Statistical Process Control Tools for a Semiconductor Etch Process: Improving Robustness through Model Updating , 1997 .

[28]  Venkat Venkatasubramanian,et al.  Signed Digraph based Multiple Fault Diagnosis , 1997 .

[29]  Jingzhu Shen,et al.  A hybrid ANN-ES system for dynamic fault diagnosis of hydrocracking process , 1997 .

[30]  J. Gertler Fault detection and isolation using parity relations , 1997 .

[31]  Jie Chen,et al.  Observer-based fault detection and isolation: robustness and applications , 1997 .

[32]  Michèle Basseville,et al.  Information criteria for residual generation and fault detection and isolation , 1997, Autom..

[33]  Ali Cinar,et al.  Diagnosis of process disturbances by statistical distance and angle measures , 1997 .

[34]  J. Y. KELLER,et al.  Generalized likelihood ratio approach for fault detection in linear dynamic stochastic systems with unknown inputs , 1996, Int. J. Syst. Sci..

[35]  A. Zolghadri An algorithm for real-time failure detection in Kalman filters , 1996, IEEE Trans. Autom. Control..

[36]  Thomas F. Edgar,et al.  Identification of faulty sensors using principal component analysis , 1996 .

[37]  T. McAvoy,et al.  Batch tracking via nonlinear principal component analysis , 1996 .

[38]  P. Maybeck,et al.  An MMAE failure detection system for the F-16 , 1996, IEEE Transactions on Aerospace and Electronic Systems.

[39]  Ali Cinar,et al.  Statistical process monitoring and disturbance diagnosis in multivariable continuous processes , 1996 .

[40]  S. A. Bøgh,et al.  Multiple hypothesis-testing approach to FDI for the industrial actuator benchmark , 1995 .

[41]  Christos Georgakis,et al.  Disturbance detection and isolation by dynamic principal component analysis , 1995 .

[42]  Chuei-Tin Chang,et al.  Dynamic process diagnosis via integrated neural networks , 1995 .

[43]  Ron J. Patton,et al.  Robustness in Model-Based Fault Diagnosis: The 1995 Situation , 1995 .

[44]  Barry M. Wise,et al.  The process chemometrics approach to process monitoring and fault detection , 1995 .

[45]  Janos Gertler,et al.  Generating directional residuals with dynamic parity relations , 1995, Autom..

[46]  J. Macgregor,et al.  Monitoring batch processes using multiway principal component analysis , 1994 .

[47]  Liang-sun Lee,et al.  Quantifying signed directed graphs with the fuzzy set for fault diagnosis resolution improvement , 1994 .

[48]  T. Kailath,et al.  Fast Estimation of Principal Eigenspace Using LanczosAlgorithm , 1994 .

[49]  James R. Whiteley,et al.  A similarity-based approach to interpretation of sensor data using adaptive resonance theory , 1994 .

[50]  Ravi Mazumdar,et al.  Wavelet representations of stochastic processes and multiresolution stochastic models , 1994, IEEE Trans. Signal Process..

[51]  Steven X. Ding,et al.  Frequency domain approach to optimally robust residual generation and evaluation for model-based fault diagnosis , 1994, Autom..

[52]  Theodora Kourti,et al.  Statistical Process Control of Multivariate Processes , 1994 .

[53]  P. Frank Enhancement of robustness in observer-based fault detection† , 1994 .

[54]  S. Wold Exponentially weighted moving principal components analysis and projections to latent structures , 1994 .

[55]  Venkat Venkatasubramanian,et al.  Neural network decomposition strategies for large-scale fault diagnosis , 1994 .

[56]  David M. Himmelblau,et al.  The possible cause and effect graphs (PCEG) model for fault diagnosis—I. Methodology , 1994 .

[57]  P.S. Maybeck,et al.  Performance enhancement of a multiple model adaptive estimator , 1995, Proceedings of 32nd IEEE Conference on Decision and Control.

[58]  Peter L. Lee,et al.  An integrated neural network/expert system approach for fault diagnosis , 1993 .

[59]  I. Nikiforov,et al.  Application of statistical fault detection algorithms to navigation systems monitoring , 1993, Autom..

[60]  Benjamin Kuipers,et al.  Numerical Behavior Envelopes for Qualitative Models , 1993, AAAI.

[61]  Michèle Basseville,et al.  Detection of abrupt changes: theory and application , 1993 .

[62]  Michael Nikolaou,et al.  An approach to fault diagnosis of chemical processes via neural networks , 1993 .

[63]  Bhavik R. Bakshi,et al.  Wave‐net: a multiresolution, hierarchical neural network with localized learning , 1993 .

[64]  W. Harmon Ray,et al.  Chemometric methods for process monitoring and high‐performance controller design , 1992 .

[65]  Nola D. Tracy,et al.  Multivariate Control Charts for Individual Observations , 1992 .

[66]  Thomas J. McAvoy,et al.  Nonlinear PLS Modeling Using Neural Networks , 1992 .

[67]  J. F. Davis,et al.  Knowledge-based diagnostic systems for continuous process operations based upon the task framework , 1992 .

[68]  Venkat Venkatasubramanian,et al.  Representing and diagnosing dynamic process data using neural networks , 1992 .

[69]  Paul M. Frank,et al.  Fault-diagnosis by disturbance decoupled nonlinear observers , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[70]  Jie Zhang,et al.  Process fault diagnosis with diagnostic rules based on structural decomposition , 1991 .

[71]  C.A. Jacobson,et al.  An integrated approach to controls and diagnostics using the four parameter controller , 1991, IEEE Control Systems.

[72]  J. Chen,et al.  A Review of Parity Space Approaches to Fault Diagnosis , 1991 .

[73]  Lyle H. Ungar,et al.  COMPARATIVE ANALYSIS OF QUALITATIVE MODELS WHEN THE MODEL CHANGES , 1991 .

[74]  J. Edward Jackson,et al.  A User's Guide to Principal Components. , 1991 .

[75]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[76]  Kenneth A. Loparo,et al.  Leak detection in an experimental heat exchanger process: a multiple model approach , 1991 .

[77]  Thomas E. Marlin,et al.  Multivariate statistical monitoring of process operating performance , 1991 .

[78]  Olivier Raiman,et al.  Order of Magnitude Reasoning , 1986, Artif. Intell..

[79]  Qiang Luo,et al.  Diagnosis of Plant Failures Using Orthogonal Parity Equations , 1990 .

[80]  Lyle H. Ungar,et al.  A first principles approach to automated troubleshooting of chemical plants , 1990 .

[81]  P. Frank,et al.  Fault detection via factorization approach , 1990 .

[82]  G. Stephanopoulos,et al.  Representation of process trends—Part I. A formal representation framework , 1990 .

[83]  Lyle H. Ungar,et al.  Adaptive networks for fault diagnosis and process control , 1990 .

[84]  Janos Gertler,et al.  A new structural framework for parity equation-based failure detection and isolation , 1990, Autom..

[85]  Spyros G. Tzafestas,et al.  Modern approaches to system/sensor fault detection and diagnosis , 1990 .

[86]  Benjamin J. Kaipers,et al.  Qualitative Simulation , 1989, Artif. Intell..

[87]  Venkat Venkatasubramanian,et al.  A neural network methodology for process fault diagnosis , 1989 .

[88]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[89]  N. R. Basila,et al.  A Model-Object based Supervisory Expert System for Fault Tolerant Chemical Reactor Control , 1989, 1989 American Control Conference.

[90]  J.J. Gertler,et al.  Survey of model-based failure detection and isolation in complex plants , 1988, IEEE Control Systems Magazine.

[91]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[92]  O. O. Oyeleye,et al.  Qualitative simulation of chemical process systems: Steady‐state analysis , 1988 .

[93]  Gary J. Powers,et al.  On-line hazard aversion and fault diagnosis in chemical processes: the digraph+fault-tree method , 1988 .

[94]  Mohammad-Ali Massoumnia,et al.  Generating parity relations for detecting and identifying control system component failures , 1988 .

[95]  D. W. Osten,et al.  Selection of optimal regression models via cross‐validation , 1988 .

[96]  Paul M. Frank Advanced Fault Detection and Isolation Schemes Using Nonlinear and Robust Observers , 1987 .

[97]  Mark A. Kramer,et al.  A rule‐based approach to fault diagnosis using the signed directed graph , 1987 .

[98]  Robert Milne,et al.  Strategies for Diagnosis , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[99]  Herbert A. Simon,et al.  Causality in Device Behavior , 1989, Artif. Intell..

[100]  F. P. Lees,et al.  The propagation of faults in process plants: 2. Fault tree synthesis , 1986 .

[101]  Thomas Kailath,et al.  Detection of signals by information theoretic criteria , 1985, IEEE Trans. Acoust. Speech Signal Process..

[102]  J. L. Speyer,et al.  Shiryayev sequential probability ratio test for redundancy management , 1984 .

[103]  A. Willsky,et al.  Analytical redundancy and the design of robust failure detection systems , 1984 .

[104]  Asok Ray,et al.  A Fault Detection and Isolation Methodology Theory and Application , 1984, 1984 American Control Conference.

[105]  Satoshi Miyazaki,et al.  Fault location using digraph and inverse direction search with application , 1983, Autom..

[106]  John O'Reilly,et al.  Observers for Linear Systems , 1983 .

[107]  B. Friedland,et al.  Estimating sudden changes of biases in linear dynamic systems , 1982 .

[108]  Edmund R. Malinowski,et al.  Factor Analysis in Chemistry , 1980 .

[109]  Eiji O'Shima,et al.  A graphical approach to cause and effect analysis of chemical processing systems , 1980 .

[110]  Edward Chow,et al.  Issues in the development of a general design algorithm for reliable failure detection , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[111]  R. Clark The dedicated observer approach to instrument failure detection , 1979, 1979 18th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[112]  W. Krzanowski Between-Groups Comparison of Principal Components , 1979 .

[113]  M. Iri,et al.  An algorithm for diagnosis of system failures in the chemical process , 1979 .

[114]  S. Wold Cross-Validatory Estimation of the Number of Components in Factor and Principal Components Models , 1978 .

[115]  Gary J. Powers,et al.  Computer-aided Synthesis of Fault-trees , 1977, IEEE Transactions on Reliability.

[116]  Alan S. Willsky,et al.  A survey of design methods for failure detection in dynamic systems , 1976, Autom..

[117]  A. Willsky,et al.  A generalized likelihood ratio approach to the detection and estimation of jumps in linear systems , 1976 .

[118]  Warren D. Seider,et al.  A new technique for precedence‐ordering chemical process equation sets , 1973 .

[119]  Richard Vernon Beard,et al.  Failure accomodation in linear systems through self-reorganization. , 1971 .