A product-estimate for Ginzburg–Landau and corollaries

Abstract We prove a new inequality for the Jacobian (or vorticity) associated to the Ginzburg–Landau energy in any dimension. It allows to retrieve existing lower bounds on the energy, to extend them to the case of unbounded vorticity, and to get a few other corollaries. It also provides a new estimate on the time-variation for time-dependent families, which has applications for the study of Ginzburg–Landau dynamics.

[1]  R. Jerrard Vortex dynamics for the Ginzburg-Landau wave equation , 1999 .

[2]  Fanghua Lin,et al.  Complex Ginzburg-Landau equations in high dimensions and codimension two area minimizing currents , 1999 .

[3]  Tristan Rivière,et al.  Line vortices in the U(1) Higgs model , 1996 .

[4]  Fanghua Lin,et al.  Vortex dynamics for the nonlinear wave equation , 1999 .

[5]  Jean-Michel Coron,et al.  Harmonic maps with defects , 1986 .

[6]  Halil Mete Soner,et al.  The Jacobian and the Ginzburg-Landau energy , 2002 .

[7]  Sylvia Serfaty,et al.  Global minimizers for the Ginzburg–Landau functional below the first critical magnetic field , 2000 .

[8]  Sylvia Serfaty,et al.  ON THE ENERGY OF TYPE-II SUPERCONDUCTORS IN THE MIXED PHASE , 2000 .

[9]  Etienne Sandier Ginzburg-Landau minimizers from R^{n+1} to R^n and minimal connections , 2001 .

[10]  Michael Tinkham,et al.  Introduction to Superconductivity , 1975 .

[11]  J. Bourgain,et al.  H1/2 maps with values into the circle: Minimal Connections, Lifting, and the Ginzburg–Landau equation , 2004 .

[12]  S. Serfaty,et al.  Gamma‐convergence of gradient flows with applications to Ginzburg‐Landau , 2004 .

[13]  H. Brezis,et al.  Ginzburg-Landau Vortices , 1994 .

[14]  H. Brezis,et al.  Quantization effects for −Δu = u(1 − |u|2) in ℝ2 , 1994 .

[15]  Amandine Aftalion,et al.  Pinning phenomena in the Ginzburg-Landau model of superconductivity , 2000 .

[16]  Giandomenico Orlandi,et al.  Asymptotics for the Ginzburg–Landau Equation in Arbitrary Dimensions , 2001 .

[17]  R. Jerrard Lower bounds for generalized Ginzburg-Landau functionals , 1999 .

[18]  L. Ambrosio,et al.  Currents in metric spaces , 2000 .

[19]  Giovanni Alberti,et al.  Variational convergence for functionals of Ginzburg-Landau type. , 2005 .

[20]  Brian White Rectifiability of flat chains , 1999 .

[21]  Sylvia Serfaty,et al.  Limiting vorticities for the Ginzburg-Landau equations , 2003 .

[22]  Sylvia Serfaty,et al.  A rigorous derivation of a free-boundary problem arising in superconductivity , 2000 .

[23]  Etienne Sandier,et al.  Lower Bounds for the Energy of Unit Vector Fields and Applications , 1998 .

[24]  Halil Mete Soner,et al.  Limiting Behavior of the Ginzburg–Landau Functional , 2002 .