Examples of ill-behaved central paths in convex optimization

Abstract.This paper presents some examples of ill-behaved central paths in convex optimization. Some contain infinitely many fixed length central segments; others manifest oscillations with infinite variation. These central paths can be encountered even for infinitely differentiable data.

[1]  L. McLinden An analogue of Moreau's proximation theorem, with application to the nonlinear complementarity problem. , 1980 .

[2]  T Talaky,et al.  Interior Point Methods of Mathematical Programming , 1997 .

[3]  N. Megiddo Pathways to the optimal set in linear programming , 1989 .

[4]  V. Smirnov,et al.  FUNCTIONS OF SEVERAL VARIABLES , 1964 .

[5]  Roberto Cominetti,et al.  Asymptotic Analysis for Penalty and Barrier Methods in Convex and Linear Programming , 1997, Math. Oper. Res..

[6]  Renato D. C. Monteiro,et al.  Limiting behavior of the affine scaling continuous trajectories for linear programming problems , 1991, Math. Program..

[7]  Yinyu Ye,et al.  A primal-dual interior point method whose running time depends only on the constraint matrix , 1996, Math. Program..

[8]  Shinji Mizuno,et al.  Limiting Behavior of Trajectories Generated by a Continuation Method for Monotone Complementarity Problems , 1990, Math. Oper. Res..

[9]  W. Fleming Functions of Several Variables , 1965 .

[10]  Renato D. C. Monteiro,et al.  On the Existence and Convergence of the Central Path for Convex Programming and Some Duality Results , 1998, Comput. Optim. Appl..

[11]  Robert J. Vanderbei,et al.  An Interior-Point Algorithm for Nonconvex Nonlinear Programming , 1999, Comput. Optim. Appl..

[12]  Jean-Philippe Vial,et al.  Theory and algorithms for linear optimization - an interior point approach , 1998, Wiley-Interscience series in discrete mathematics and optimization.

[13]  Anthony V. Fiacco,et al.  Nonlinear programming;: Sequential unconstrained minimization techniques , 1968 .

[14]  L. N. Vicente,et al.  Trust-Region Interior-Point SQP Algorithms for a Class of Nonlinear Programming Problems , 1998 .

[15]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[16]  Anders Forsgren,et al.  Primal-Dual Interior Methods for Nonconvex Nonlinear Programming , 1998, SIAM J. Optim..

[17]  R. Cominetti Nonlinear Averages and Convergence of Penalty Trajectories in Convex Programming , 1999 .

[18]  Clóvis C. Gonzaga,et al.  Path-Following Methods for Linear Programming , 1992, SIAM Rev..

[19]  Dick den Hertog,et al.  Interior Point Approach to Linear, Quadratic and Convex Programming: Algorithms and Complexity , 1994 .

[20]  Nimrod Megiddo,et al.  A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems , 1991, Lecture Notes in Computer Science.

[21]  Michael L. Overton,et al.  A Primal-dual Interior Method for Nonconvex Nonlinear Programming , 1998 .

[22]  P. Boggs,et al.  On the convergence behavior of trajectories for linear programming , 1988 .

[23]  H. Whitney Functions Differentiable on the Boundaries of Regions , 1934 .

[24]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[25]  Olvi L. Mangasarian,et al.  Smoothing methods for convex inequalities and linear complementarity problems , 1995, Math. Program..

[26]  R. Monteiro,et al.  Limiting behavior of the derivatives of certain trajectories associated with a monotone horizontal linear complementarity problem , 1996 .

[27]  Benjamin Jansen,et al.  Interior Point Techniques in Optimization , 1997 .

[28]  Akihisa Tamura,et al.  Ideal polytopes and face structures of some combinatorial optimization problems , 1995, Math. Program..

[29]  D. Bayer,et al.  The Non-Linear Geometry of Linear Pro-gramming I: A?ne and projective scaling trajectories , 1989 .

[30]  Olvi L. Mangasarian,et al.  A class of smoothing functions for nonlinear and mixed complementarity problems , 1996, Comput. Optim. Appl..

[31]  Jorge Nocedal,et al.  A trust region method based on interior point techniques for nonlinear programming , 2000, Math. Program..

[32]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .