Theory of computation of multidimensional entropy with an application to the monomer-dimer problem

Consider all colorings of a finite box in a multidimensional grid with a given number of colors subject to given local constraints. We outline the most recent theory for the computation of the exponential growth rate of the number of such colorings as a function of the dimensions of the box. As an application we compute the monomer-dimer constant for the 2-dimensional grid to 9 decimal digits, agreeing with the heuristic computations of Baxter, and for the 3-dimensional grid with an error smaller than 1.35%.

[1]  R. Baxter,et al.  Hard hexagons: exact solution , 1980 .

[2]  Shmuel Friedland,et al.  Multi-Dimensional Capacity, Pressure and Hausdorff Dimension , 2003, Mathematical Systems Theory in Biology, Communications, Computation, and Finance.

[3]  L. Pauling The Structure and Entropy of Ice and of Other Crystals with Some Randomness of Atomic Arrangement , 1935 .

[4]  M. Jerrum Two-dimensional monomer-dimer systems are computationally intractable , 1987 .

[5]  Jørn Justesen,et al.  Entropy Bounds for Constrained Two-Dimensional Random Fields , 1999, IEEE Trans. Inf. Theory.

[6]  Christ Church,et al.  A lower bound on the maximum permanent in kn , 2003 .

[7]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[8]  J. M. Hammersley,et al.  A Lower Bound for the Monomer-Dimer Problem , 1970 .

[9]  J. M. Hammersley,et al.  An improved lower bound for the multidimensional dimer problem , 1968, Mathematical Proceedings of the Cambridge Philosophical Society.

[10]  Robert L. Berger The undecidability of the domino problem , 1966 .

[11]  Elliott H. Lieb,et al.  Solution of the Dimer Problem by the Transfer Matrix Method , 1967 .

[12]  M. Fisher Statistical Mechanics of Dimers on a Plane Lattice , 1961 .

[13]  Shmuel Friedland A proof of a generalized van der Waerden conjecture on permanents , 1982 .

[14]  Ian M. Wanless A lower bound on the maximum permanent in Λnk , 2003 .

[15]  Kenneth Zeger,et al.  Capacity Bounds for the 3-Dimensional (0, 1) Runlength Limited Channel , 1999, AAECC.

[16]  John F. Nagle,et al.  New Series-Expansion Method for the Dimer Problem , 1966 .

[17]  Richard E. Blahut,et al.  The Capacity and Coding Gain of Certain Checkerboard Codes , 1998, IEEE Trans. Inf. Theory.

[18]  P. W. Kasteleyn The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice , 1961 .

[19]  Alexander Schrijver,et al.  Counting 1-Factors in Regular Bipartite Graphs , 1998, J. Comb. Theory B.

[20]  I. Beichl,et al.  Approximating the Permanent via Importance Sampling with Application to the Dimer Covering Problem , 1999 .

[21]  Elliott H. Lleb Residual Entropy of Square Ice , 1967 .

[22]  S. Friedland On the entropy of Zd subshifts of finite type , 1997 .

[23]  Klaus Schmidt,et al.  Algebraic ideas in ergodic theory , 1990 .

[24]  P. W. Kasteleyn The Statistics of Dimers on a Lattice , 1961 .

[25]  K. Culík,et al.  The topological entropy of cellular automata is uncomputable , 1992, Ergodic Theory and Dynamical Systems.

[26]  J. A. Bondy,et al.  A note on the monomer dimer problem , 1966, Mathematical Proceedings of the Cambridge Philosophical Society.

[27]  O. J. Heilmann,et al.  Theory of monomer-dimer systems , 1972 .

[28]  J. Neyman,et al.  Research Papers in Statistics. Festschrift for J. Neyman F.N. David editor, assisted by E. Fix. London, New York, Sydney, J. Wiley & Sons, 1966, VIII p. 468 p., 105/–. , 1968, Recherches économiques de Louvain.

[29]  R. Baxter,et al.  Dimers on a Rectangular Lattice , 1968 .

[30]  D. S. Gaunt,et al.  Exact Series-Expansion Study of the Monomer-Dimer Problem , 1969 .

[31]  A. Sinclair,et al.  Approximating the number of monomer-dimer coverings of a lattice , 1996 .

[32]  Shimon Even,et al.  Graph Algorithms , 1979 .

[33]  Per Håkan Lundow Compression of transfer matrices , 2001, Discret. Math..

[34]  Kenneth Zeger,et al.  Capacity bounds for the three-dimensional (0, 1) run length limited channel , 2000, IEEE Trans. Inf. Theory.

[35]  R. Fowler,et al.  An attempt to extend the statistical theory of perfect solutions , 1937 .

[36]  Mihai Ciucu,et al.  An improved upper bound for the $3$-dimensional dimer problem , 1998 .

[37]  Herbert S. Wilf,et al.  The Number of Independent Sets in a Grid Graph , 1998, SIAM J. Discret. Math..