Particle gibbs with ancestor sampling
暂无分享,去创建一个
[1] M. Pitt,et al. Filtering via Simulation: Auxiliary Particle Filters , 1999 .
[2] A. Doucet,et al. A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .
[3] Jasper A. Vrugt,et al. Hydrologic data assimilation using particle Markov chain Monte Carlo simulation: Theory, concepts and applications (online first) , 2012 .
[4] Gareth O. Roberts,et al. Non-centred parameterisations for hierarchical models and data augmentation. , 2003 .
[5] Charles J. Geyer,et al. Practical Markov Chain Monte Carlo , 1992 .
[6] C. Andrieu,et al. Markovian stochastic approximation with expanding projections , 2011, 1111.5421.
[7] Carl E. Rasmussen,et al. State-Space Inference and Learning with Gaussian Processes , 2010, AISTATS.
[8] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[9] M. Keeling,et al. Modeling Infectious Diseases in Humans and Animals , 2007 .
[10] Darren J Wilkinson,et al. Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo , 2011, Interface Focus.
[11] Darren J. Wilkinson,et al. Bayesian inference for nonlinear multivariate diffusion models observed with error , 2008, Comput. Stat. Data Anal..
[12] M. Chesney,et al. Pricing European Currency Options: A Comparison of the Modified Black-Scholes Model and a Random Variance Model , 1989, Journal of Financial and Quantitative Analysis.
[13] Pierre Priouret,et al. Adaptive Algorithms and Stochastic Approximations , 1990, Applications of Mathematics.
[14] G. C. Wei,et al. A Monte Carlo Implementation of the EM Algorithm and the Poor Man's Data Augmentation Algorithms , 1990 .
[15] Branko Ristic,et al. Monitoring and prediction of an epidemic outbreak using syndromic observations. , 2011, Mathematical Biosciences.
[16] Branko Ristic,et al. Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .
[17] Fredrik Lindsten,et al. Ancestor Sampling for Particle Gibbs , 2012, NIPS.
[18] É. Moulines,et al. Convergence of a stochastic approximation version of the EM algorithm , 1999 .
[19] Hoon Kim,et al. Monte Carlo Statistical Methods , 2000, Technometrics.
[20] P. Fearnhead,et al. Particle filters for partially observed diffusions , 2007, 0710.4245.
[21] Christophe Andrieu,et al. Uniform ergodicity of the iterated conditional SMC and geometric ergodicity of particle Gibbs samplers , 2013, 1312.6432.
[22] Tim Hesterberg,et al. Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.
[23] D. V. van Dyk,et al. Partially Collapsed Gibbs Samplers , 2008 .
[24] A. Doucet,et al. Monte Carlo Smoothing for Nonlinear Time Series , 2004, Journal of the American Statistical Association.
[25] Andreas Krause,et al. Advances in Neural Information Processing Systems (NIPS) , 2014 .
[26] Christian P. Robert,et al. Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .
[27] N. Shephard,et al. The simulation smoother for time series models , 1995 .
[28] D. Blei. Bayesian Nonparametrics I , 2016 .
[29] Sophie Donnet,et al. EM algorithm coupled with particle filter for maximum likelihood parameter estimation of stochastic differential mixed-effects models , 2010 .
[30] Fredrik Lindsten,et al. Backward Simulation Methods for Monte Carlo Statistical Inference , 2013, Found. Trends Mach. Learn..
[31] Tobias Rydén,et al. Rao-Blackwellization of Particle Markov Chain Monte Carlo Methods Using Forward Filtering Backward Sampling , 2011, IEEE Transactions on Signal Processing.
[32] P. Müller,et al. Bayesian Nonparametrics: An invitation to Bayesian nonparametrics , 2010 .
[33] Michael I. Jordan,et al. Hierarchical Dirichlet Processes , 2006 .
[34] David A. Rasmussen,et al. Inference for Nonlinear Epidemiological Models Using Genealogies and Time Series , 2011, PLoS Comput. Biol..
[35] A. Doucet,et al. Particle Markov chain Monte Carlo methods , 2010 .
[36] Sumeetpal S. Singh,et al. On the Particle Gibbs Sampler , 2013 .
[37] Fredrik Gustafsson,et al. Particle filters for positioning, navigation, and tracking , 2002, IEEE Trans. Signal Process..
[38] Sumeetpal S. Singh,et al. On particle Gibbs sampling , 2013, 1304.1887.
[39] M. J. Bayarri,et al. Non-Centered Parameterisations for Hierarchical Models and Data Augmentation , 2003 .
[40] D. Stephens,et al. Stochastic volatility modelling in continuous time with general marginal distributions: Inference, prediction and model selection , 2007 .
[41] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[42] Ralph S. Silva,et al. On Some Properties of Markov Chain Monte Carlo Simulation Methods Based on the Particle Filter , 2012 .
[43] Linda C. van der Gaag,et al. Probabilistic Graphical Models , 2014, Lecture Notes in Computer Science.
[44] A. Doucet,et al. Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator , 2012, 1210.1871.
[45] Fredrik Lindsten,et al. On the use of backward simulation in the particle Gibbs sampler , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[46] Jun S. Liu. Peskun's theorem and a modified discrete-state Gibbs sampler , 1996 .
[47] L. Tierney. Markov Chains for Exploring Posterior Distributions , 1994 .
[48] M. Escobar,et al. Bayesian Density Estimation and Inference Using Mixtures , 1995 .
[49] S. Turnbull,et al. Pricing foreign currency options with stochastic volatility , 1990 .
[50] G. Bierman. Fixed interval smoothing with discrete measurements , 1972 .
[51] Jeremy Ginsberg,et al. Detecting influenza epidemics using search engine query data , 2009, Nature.
[52] M. Li,et al. Particle Markov chain Monte Carlo methods , 2015 .
[53] Simon J. Godsill,et al. Rao-Blackwellized particle smoothers for mixed linear/nonlinear state-space models , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.
[54] P. Moral,et al. Sequential Monte Carlo samplers , 2002, cond-mat/0212648.
[55] N. Shephard,et al. Stochastic Volatility: Likelihood Inference And Comparison With Arch Models , 1996 .
[56] Giuseppe Cavaliere. Stochastic Volatility: Selected Readings , 2006 .
[57] A. Doucet,et al. Efficient Bayesian Inference for Switching State-Space Models using Discrete Particle Markov Chain Monte Carlo Methods , 2010, 1011.2437.
[58] Jun S. Liu,et al. Mixture Kalman filters , 2000 .
[59] Pierre E. Jacob,et al. Path storage in the particle filter , 2013, Statistics and Computing.
[60] Darren J. Wilkinson,et al. Parallel Bayesian Computation , 2005 .
[61] Carl E. Rasmussen,et al. Bayesian Inference and Learning in Gaussian Process State-Space Models with Particle MCMC , 2013, NIPS.
[62] John Parslow,et al. On Disturbance State-Space Models and the Particle Marginal Metropolis-Hastings Sampler , 2012, SIAM/ASA J. Uncertain. Quantification.
[63] Timo Koski,et al. Decomposition Sampling applied to Parallelization of Metropolis-Hastings , 2014, 1402.2828.
[64] Eric Moulines,et al. Stability of Stochastic Approximation under Verifiable Conditions , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.
[65] Fredrik Lindsten,et al. An efficient stochastic approximation EM algorithm using conditional particle filters , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.
[66] Robert Kohn,et al. Auxiliary particle ltering within adaptive Metropolis-Hastings sampling , 2010, 1006.1914.