Univariate and Multivariate Process Capability Analysis for Different Types of Specification Limits

In the context of statistical quality control, process capability index (PCI) is one of the widely accepted approaches for assessing the performance of a process with respect to the pre-assigned specification limits. The quality characteristic under consideration can have differnt types of specification limits like bilateral, unilateral, circular and so on. Use of single PCI for all the situations could be misleading. Hence appropriate PCIs need to be chosen based on the characteristics of the specification limits. Similar situations may arise for multivariate characteristics as well. In the present chapter, we have discussed about some of the PCIs for different specification limits including some PCIs for multivariate characteristics. A few numerical examples are given to suppliment our theoretical discussion.

[1]  K. Mardia Measures of multivariate skewness and kurtosis with applications , 1970 .

[2]  Robert N. Rodriguez Recent Developments in Process Capability Analysis , 1992 .

[3]  K. S. Krishnamoorthi CAPABILITY INDICES FOR PROCESSES SUBJECT TO UNILATERAL AND POSITIONAL TOLERANCES , 1990 .

[4]  Kuen-Suan Chen,et al.  One‐sided capability indices CPU and CPL: decision making with sample information , 2002 .

[5]  Kuen-Suan Chen,et al.  Capability indices for processes with asymmetric tolerances , 2001 .

[6]  S. Shapiro,et al.  An Analysis of Variance Test for Normality (Complete Samples) , 1965 .

[7]  Babak Abbasi,et al.  Multivariate nonnormal process capability analysis , 2009 .

[8]  W. L. Pearn,et al.  Testing process capability for one-sided specification limit with application to the voltage level translator , 2002, Microelectron. Reliab..

[9]  Samuel Kotz,et al.  Process Capability Indices—A Review, 1992–2000 , 2002 .

[10]  Babak Abbasi,et al.  Estimating process capability indices of multivariate nonnormal processes , 2010 .

[11]  Wen Lea Pearn,et al.  Supplier selection for one-sided processes with unequal sample sizes , 2009, Eur. J. Oper. Res..

[12]  T. Du,et al.  Using principal component analysis in process performance for multivariate data , 2000 .

[13]  Evdokia Xekalaki,et al.  On the Implementation of the Principal Component Analysis–Based Approach in Measuring Process Capability , 2012, Qual. Reliab. Eng. Int..

[14]  Nicholas R. Farnum,et al.  USING JOHNSON CURVES TO DESCRIBE NON-NORMAL ROCESS DATA , 1996 .

[15]  Samuel Kotz,et al.  An overview of theory and practice on process capability indices for quality assurance , 2009 .

[16]  Daniel Grau,et al.  Multivariate Capability Indices for Processes with Asymmetric Tolerances , 2007 .

[17]  A note on the interval estimation of c_{pk} with asymmetric tolerances , 2002 .

[18]  Statistical Inference from Boyles' Capability Index , 2003 .

[19]  Robert H. Kushler,et al.  Confidence Bounds for Capability Indices , 1992 .

[20]  A. Chakraborty,et al.  Unification of some multivariate process capability indices for asymmetric specification region , 2017 .

[21]  F. Wang,et al.  Capability Index Using Principal Components Analysis , 1998 .

[22]  Davis R. Bothe Assessing Capability for Hole Location , 2006 .

[23]  A. Chakraborty,et al.  A Superstructure of Process Capability Indices for Circular Specification Region , 2015 .

[24]  Malin Albing,et al.  Process capability indices for Weibull distributions and upper specification limits , 2009, Qual. Reliab. Eng. Int..

[25]  Kerstin Vännman,et al.  A uniformed approach to capability indices , 1995 .

[26]  Kerstin Vännman,et al.  Families of Capability Indices for One-Sided Specification Limits , 1998 .

[27]  James W. Liddy,et al.  A note on multivariate capability indices , 1993 .

[28]  Ashis Kumar Chakraborty,et al.  UNIVARIATE PROCESS CAPABILITY INDICES FOR UNILATERAL SPECIFICATION REGION — A REVIEW AND SOME MODIFICATIONS , 2012 .

[29]  Jyh-Jen Horng Shiau,et al.  Yield‐Related Process Capability Indices for Processes of Multiple Quality Characteristics , 2013, Qual. Reliab. Eng. Int..

[30]  Wen Lea Pearn,et al.  APPLICATION OF CLEMENTS' METHOD FOR CALCULATING SECOND- AND THIRD-GENERATION PROCESS CAPABILITY INDICES FOR NON-NORMAL PEARSONIAN POPULATIONS , 1994 .

[31]  Victor E. Kane,et al.  Process Capability Indices , 1986 .

[32]  Loon Ching Tang,et al.  Computing process capability indices for non‐normal data: a review and comparative study , 1999 .

[33]  W. L. Pearn,et al.  New generalization of process capability index Cpk , 1998 .

[34]  N. L. Johnson,et al.  Distributional and Inferential Properties of Process Capability Indices , 1992 .

[35]  A. Polansky,et al.  Multivariate process capability via Löwner ordering , 2009 .

[36]  J. Royston Some Techniques for Assessing Multivarate Normality Based on the Shapiro‐Wilk W , 1983 .

[37]  Kerstin Vännman,et al.  A general class of capability indices in the case of asymmetric tolerances , 1997 .

[38]  Peter A. Wright A process capability index sensitive to skewness , 1995 .

[39]  N. L. Johnson,et al.  Systems of frequency curves generated by methods of translation. , 1949, Biometrika.

[40]  Moments of the Radial Error , 1962 .

[41]  Wen Lea Pearn,et al.  Estimating capability index cpk for processes with asymmetric tolerances , 2000 .

[42]  Wen Lea Pearn,et al.  A generalization of Clements’ method for non‐normal Pearsonian processes with asymmetric tolerances , 1999 .

[43]  Paul L. Goethals,et al.  The development of a target‐focused process capability index with multiple characteristics , 2011, Qual. Reliab. Eng. Int..

[44]  Kerstin Vännman,et al.  Process capability indices for one-sided specification intervals and skewed distributions , 2007, Qual. Reliab. Eng. Int..

[45]  Arnon M. Hurwitz,et al.  CAPABILITY INDICES FOR NON-NORMAL DATA , 2000 .

[46]  A. Veevers Viability and capability indexes for multiresponse processes , 1998 .

[47]  Ashis Kumar Chakraborty,et al.  Exact Relationship of C″pk with Proportion of Nonconformance and Some Other Properties of C″p(u,v) , 2014, Qual. Reliab. Eng. Int..

[48]  José A. Villaseñor Alva,et al.  A Generalization of Shapiro–Wilk's Test for Multivariate Normality , 2009 .

[49]  L. Franklin,et al.  Bootstrap Lower Confidence Limits for Capability Indices , 1992 .

[50]  Babak Abbasi,et al.  A transformation technique to estimate the process capability index for non-normal processes , 2008 .

[51]  Samuel Kotz,et al.  Encyclopedia and Handbook of Process Capability Indices - A Comprehensive Exposition of Quality Control Measures , 2006, Series on Quality, Reliability and Engineering Statistics.

[52]  D. Grau New Process Capability Indices for One-Sided Tolerances , 2009 .

[53]  Alan M. Polansky,et al.  A Smooth Nonparametric Approach to Multivariate Process Capability , 2001, Technometrics.

[54]  R. A. Boyles Brocess capability with asymmetric tolerances , 1994 .

[55]  Douglas C. Montgomery,et al.  PROCESS CAPABILITY INDICES AND NON-NORMAL DISTRIBUTIONS , 1996 .

[56]  Wen Lea Pearn,et al.  Estimating process capability index C′′pmk for asymmetric tolerances: Distributional properties , 2002 .

[57]  Wen Lea Pearn,et al.  The C”pk index for asymmetric tolerances: Implications and inference , 2004 .

[58]  Ingrid Tano,et al.  A Multivariate Process Capability Index Based on the First Principal Component Only , 2013, Qual. Reliab. Eng. Int..

[59]  Fu-Kwun Wang,et al.  Measuring production yield for processes with multiple quality characteristics , 2006 .

[60]  Hamid Shahriari,et al.  A New Multivariate Process Capability Vector , 2009 .

[61]  R. L. Shinde,et al.  Multivariate process capability using principal component analysis , 2009, Qual. Reliab. Eng. Int..