Pathogen-specific antimicrobials engineered de novo through membrane-protein biomimicry

[1]  P. Wyatt,et al.  PE/PPE proteins mediate nutrient transport across the outer membrane of Mycobacterium tuberculosis , 2020, Science.

[2]  John A. Robinson,et al.  Chimeric peptidomimetic antibiotics against Gram-negative bacteria , 2019, Nature.

[3]  Adam Bolotsky,et al.  Two-Dimensional Materials in Biosensing and Healthcare: from In Vitro Diagnostics to Optogenetics and Beyond. , 2019, ACS nano.

[4]  W. Vollmer,et al.  Cell wall peptidoglycan in Mycobacterium tuberculosis: An Achilles’ heel for the TB-causing pathogen , 2019, FEMS microbiology reviews.

[5]  Srinivas Tadigadapa,et al.  Detection of bacterial metabolism in lag-phase using impedance spectroscopy of agar-integrated 3D microelectrodes. , 2019, Biosensors & bioelectronics.

[6]  G. Melly,et al.  MmpL Proteins in Physiology and Pathogenesis of M. tuberculosis , 2019, Microorganisms.

[7]  John A. Robinson Folded Synthetic Peptides and Other Molecules Targeting Outer Membrane Protein Complexes in Gram-Negative Bacteria , 2019, Front. Chem..

[8]  Michael R. Thomas,et al.  Residue-Specific Solvation-Directed Thermodynamic and Kinetic Control over Peptide Self-Assembly with 1D/2D Structure Selection , 2019, ACS nano.

[9]  John A. Robinson,et al.  Thanatin targets the intermembrane protein complex required for lipopolysaccharide transport in Escherichia coli , 2018, Science Advances.

[10]  L. J. Prins,et al.  Energy consumption in chemical fuel-driven self-assembly , 2018, Nature Nanotechnology.

[11]  Ganjun Yuan,et al.  Synergistic combination of two antimicrobial agents closing each other’s mutant selection windows to prevent antimicrobial resistance , 2018, Scientific Reports.

[12]  Peter Fischer,et al.  Polyphenol-Binding Amyloid Fibrils Self-Assemble into Reversible Hydrogels with Antibacterial Activity. , 2018, ACS nano.

[13]  D. Zurawski,et al.  Narrow-Spectrum Antibacterial Agents. , 2018, MedChemComm.

[14]  D. Wykoff,et al.  Bacterial Derived Carbohydrates Bind Cyr1 and Trigger Hyphal Growth in Candida albicans , 2017, ACS infectious diseases.

[15]  Reporting for specific materials, systems and methods , 2018 .

[16]  Morten H. H. Nørholm,et al.  Increasing the permeability of Escherichia coli using MAC13243 , 2017, Scientific Reports.

[17]  Pawan Kumar,et al.  Autophagy induction by Mycobacterium indicus pranii promotes Mycobacterium tuberculosis clearance from RAW 264.7 macrophages , 2017, PloS one.

[18]  Yong Wang,et al.  Polymer Microneedle Mediated Local Aptamer Delivery for Blocking the Function of Vascular Endothelial Growth Factor. , 2017, ACS biomaterials science & engineering.

[19]  V. Nandicoori,et al.  Clathrin-Independent Killing of Intracellular Mycobacteria and Biofilm Disruptions Using Synthetic Antimicrobial Polymers. , 2017, Biomacromolecules.

[20]  Junghwan Lee,et al.  Calreticulin modulates the intracellular survival of mycobacteria by regulating ER-stress-mediated apoptosis , 2017, Oncotarget.

[21]  P. Del Vecchio,et al.  Antimicrobial peptides at work: interaction of myxinidin and its mutant WMR with lipid bilayers mimicking the P. aeruginosa and E. coli membranes , 2017, Scientific Reports.

[22]  Elizabeth M. Nolan,et al.  Human α-Defensin 6: A Small Peptide That Self-Assembles and Protects the Host by Entangling Microbes. , 2017, Accounts of chemical research.

[23]  Aleksandra A. Kolodziejczyk,et al.  Dysbiosis and the immune system , 2017, Nature Reviews Immunology.

[24]  C. Dong,et al.  Immune Cell-Mediated Biodegradable Theranostic Nanoparticles for Melanoma Targeting and Drug Delivery. , 2017, Small.

[25]  Maayan Levy,et al.  Microbiome, metabolites and host immunity. , 2017, Current opinion in microbiology.

[26]  A. K. Singh,et al.  Mobile genes in the human microbiome are structured from global to individual scales , 2016, Nature.

[27]  D. Mitchell,et al.  Targeted Treatment for Bacterial Infections: Prospects for Pathogen-Specific Antibiotics Coupled with Rapid Diagnostics. , 2016, Tetrahedron.

[28]  Markus Reischl,et al.  Improving short antimicrobial peptides despite elusive rules for activity. , 2016, Biochimica et biophysica acta.

[29]  M. Dong,et al.  Probing the Amyloid Peptide-Membrane Interaction Using a Liposome Model System , 2016 .

[30]  Martin J. Blaser,et al.  Antibiotic use and its consequences for the normal microbiome , 2016, Science.

[31]  Scott H. Medina,et al.  An Intrinsically Disordered Peptide Facilitates Non-Endosomal Cell Entry. , 2016, Angewandte Chemie.

[32]  E. Brown,et al.  Antibacterial drug discovery in the resistance era , 2016, Nature.

[33]  S. Halder,et al.  Alteration of Zeta potential and membrane permeability in bacteria: a study with cationic agents , 2015, SpringerPlus.

[34]  M. Wink,et al.  Membrane Disintegration Caused by the Steroid Saponin Digitonin Is Related to the Presence of Cholesterol , 2015, Molecules.

[35]  A. Casadevall,et al.  Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi , 2015, Nature Reviews Microbiology.

[36]  Kyong-Hoon Lee,et al.  Dielectrophoretic characterization of antibiotic-treated Mycobacterium tuberculosis complex cells , 2015, Analytical and Bioanalytical Chemistry.

[37]  Helen L Birch,et al.  The Mycobacterial Cell Wall--Peptidoglycan and Arabinogalactan. , 2015, Cold Spring Harbor perspectives in medicine.

[38]  M. Schaller,et al.  Paneth cell α-defensin 6 (HD-6) is an antimicrobial peptide , 2014, Mucosal Immunology.

[39]  T. Goldmann,et al.  Lipid Analysis of Airway Epithelial Cells for Studying Respiratory Diseases , 2014, Chromatographia.

[40]  Elizabeth M. Nolan,et al.  Molecular Basis for Self-Assembly of a Human Host-Defense Peptide That Entraps Bacterial Pathogens , 2014, Journal of the American Chemical Society.

[41]  H. Terada,et al.  A Novel Mechanism Underlying the Basic Defensive Response of Macrophages against Mycobacterium Infection , 2014, The Journal of Immunology.

[42]  C. Avitabile,et al.  Circular Dichroism studies on the interactions of antimicrobial peptides with bacterial cells , 2014, Scientific Reports.

[43]  B. Spellberg,et al.  The value of single-pathogen antibacterial agents , 2013, Nature Reviews Drug Discovery.

[44]  A. Milon,et al.  Cord factor (trehalose 6,6'-dimycolate) forms fully stable and non-permeable lipid bilayers required for a functional outer membrane. , 2013, Biochimica et biophysica acta.

[45]  Ayomi S. Perera,et al.  Nanoscopic surfactant behavior of the porin MspA in aqueous media , 2013, Beilstein journal of nanotechnology.

[46]  Markus Reischl,et al.  Targeting Mycobacterium tuberculosis and Other Microbial Pathogens Using Improved Synthetic Antibacterial Peptides , 2013, Antimicrobial Agents and Chemotherapy.

[47]  M. V. Nogués,et al.  Exploring New Biological Functions of Amyloids: Bacteria Cell Agglutination Mediated by Host Protein Aggregation , 2012, PLoS pathogens.

[48]  K. Lewis,et al.  Antibiotics: Recover the lost art of drug discovery , 2012, Nature.

[49]  F. Ding,et al.  Discrete molecular dynamics , 2012 .

[50]  Otto X. Cordero,et al.  Ecology drives a global network of gene exchange connecting the human microbiome , 2011, Nature.

[51]  H. Vogel,et al.  Relative Spatial Positions of Tryptophan and Cationic Residues in Helical Membrane-active Peptides Determine Their Cytotoxicity* , 2011, The Journal of Biological Chemistry.

[52]  H. Matsuno,et al.  Polymer-binding peptides for the noncovalent modification of polymer surfaces: effects of peptide density on the subsequent immobilization of functional proteins. , 2011, ACS applied materials & interfaces.

[53]  S. Munro,et al.  A Comprehensive Comparison of Transmembrane Domains Reveals Organelle-Specific Properties , 2010, Cell.

[54]  Yibing Huang,et al.  Alpha-helical cationic antimicrobial peptides: relationships of structure and function , 2010, Protein & Cell.

[55]  Sabine Ehrt,et al.  Acid Resistance in Mycobacterium tuberculosis , 2009, Journal of bacteriology.

[56]  R. Hodges,et al.  Effects of net charge and the number of positively charged residues on the biological activity of amphipathic α‐helical cationic antimicrobial peptides , 2009, Advances in experimental medicine and biology.

[57]  T. Pukala,et al.  Effect of antimicrobial peptides from Australian tree frogs on anionic phospholipid membranes. , 2008, Biochemistry.

[58]  D. Schnappinger,et al.  A membrane protein preserves intrabacterial pH in intraphagosomal Mycobacterium tuberculosis , 2008, Nature Medicine.

[59]  F. Ding,et al.  Ab initio folding of proteins with all-atom discrete molecular dynamics. , 2008, Structure.

[60]  M. Niederweis,et al.  Role of Porins for Uptake of Antibiotics by Mycobacterium smegmatis , 2008, Antimicrobial Agents and Chemotherapy.

[61]  R. Epand,et al.  Bacterial lipid composition and the antimicrobial efficacy of cationic steroid compounds (Ceragenins). , 2007, Biochimica et biophysica acta.

[62]  Feng Ding,et al.  Emergence of Protein Fold Families through Rational Design , 2006, PLoS Comput. Biol..

[63]  V. Deretic,et al.  Mycobacterium tuberculosis inhibition of phagolysosome biogenesis and autophagy as a host defence mechanism , 2006, Cellular microbiology.

[64]  M. Niederweis,et al.  Topology of the Porin MspA in the Outer Membrane of Mycobacterium smegmatis* , 2006, Journal of Biological Chemistry.

[65]  J. Belisle,et al.  Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Min Lu,et al.  Atomic structure of a tryptophan-zipper pentamer. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[67]  Michael Feig,et al.  MMTSB Tool Set: enhanced sampling and multiscale modeling methods for applications in structural biology. , 2004, Journal of molecular graphics & modelling.

[68]  Yuko Okamoto,et al.  Generalized-ensemble algorithms: enhanced sampling techniques for Monte Carlo and molecular dynamics simulations. , 2003, Journal of molecular graphics & modelling.

[69]  J. Borreguero,et al.  Mechanism for the α‐helix to β‐hairpin transition , 2003, Proteins.

[70]  M. Niederweis,et al.  Mycobacterial porins – new channel proteins in unique outer membranes , 2003, Molecular microbiology.

[71]  Ying Zhang,et al.  Susceptibility of Mycobacterium tuberculosis to weak acids. , 2003, The Journal of antimicrobial chemotherapy.

[72]  M. Niederweis,et al.  High-level expression of the mycobacterial porin MspA in Escherichia coli and purification of the recombinant protein. , 2003, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[73]  P. Nielsen,et al.  Cell Permeabilization and Uptake of Antisense Peptide-Peptide Nucleic Acid (PNA) into Escherichia coli * , 2002, The Journal of Biological Chemistry.

[74]  Alessandro Tossi,et al.  Amphipathic α helical antimicrobial peptides. , 2001 .

[75]  J. Andrews,et al.  Determination of minimum inhibitory concentrations. , 2001, The Journal of antimicrobial chemotherapy.

[76]  N. Skelton,et al.  Tryptophan zippers: Stable, monomeric β-hairpins , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[77]  T. Mattila-Sandholm,et al.  Fluorometric assessment of Gram‐negative bacterial permeabilization , 2000, Journal of applied microbiology.

[78]  Y. Sugita,et al.  Replica-exchange molecular dynamics method for protein folding , 1999 .

[79]  M. Karplus,et al.  Effective energy function for proteins in solution , 1999, Proteins.

[80]  H. Stanley,et al.  Discrete molecular dynamics studies of the folding of a protein-like model. , 1998, Folding & design.

[81]  R. Swendsen,et al.  THE weighted histogram analysis method for free‐energy calculations on biomolecules. I. The method , 1992 .

[82]  M. Levitt Conformational preferences of amino acids in globular proteins. , 1978, Biochemistry.

[83]  J. Bishop,et al.  In vitro growth inhibition of mastitis-causing coliform bacteria by bovine apo-lactoferrin and reversal of inhibition by citrate and high concentrations of apo-lactoferin , 1976, Infection and immunity.

[84]  J. Truant,et al.  Fluorescence microscopy of tubercle bacilli stained with auramine and rhodamine. , 1962, Henry Ford Hospital medical bulletin.