Universal Relationship between Conductivity and Solvation-Site Connectivity in Ether-Based Polymer Electrolytes

We perform a joint experimental and computational study of ion transport properties in a systematic set of linear polyethers synthesized via acyclic diene metathesis (ADMET) polymerization. We measure ionic conductivity, σ, and glass transition temperature, Tg, in mixtures of polymer and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt. While Tg is known to be an important factor in the ionic conductivity of polymer electrolytes, recent work indicates that the number and proximity of lithium ion solvation sites in the polymer also play an important role, but this effect has yet to be systematically investigated. Here, adding aliphatic linkers to a poly(ethylene oxide) (PEO) backbone lowers Tg and dilutes the polar groups; both factors influence ionic conductivity. To isolate these effects, we introduce a two-step normalization scheme. In the first step, Vogel–Tammann–Fulcher (VTF) fits are used to calculate a temperature-dependent reduced conductivity, σr(T), which is defined as the conductivity o...

[1]  R. Grubbs,et al.  Synthesis of Functionalized Polyethers by Ring-Opening Metathesis Polymerization of Unsaturated Crown Ethers , 1999 .

[2]  R. Bouchet,et al.  Mechanism of ion transport in PEO/LiTFSI complexes: Effect of temperature, molecular weight and end groups , 2012 .

[3]  R. Grubbs,et al.  Magic ring rotaxanes by olefin metathesis. , 2003, Angewandte Chemie.

[4]  C. Vincent,et al.  The effect of molecular weight on cation mobility in polymer electrolytes , 1993 .

[5]  G. Tew,et al.  Poly(ether–thioethers) by Thiol–Ene Click and Their Oxidized Analogues as Lithium Polymer Electrolytes , 2016 .

[6]  Rodger Yuan,et al.  Ionic Conductivity of Low Molecular Weight Block Copolymer Electrolytes , 2013 .

[7]  L. J. Lyons,et al.  Ion conductive characteristics of cross-linked network polysiloxane-based solid polymer electrolytes , 2004 .

[8]  W. Meyer,et al.  Polymer electrolytes for lithium-ion batteries. , 1998, Advanced materials.

[9]  Andreas Heuer,et al.  Understanding the Lithium Transport within a Rouse-Based Model for a PEO/LiTFSI Polymer Electrolyte , 2010 .

[10]  J. Kerr,et al.  Performance limitations of polymer electrolytes based on ethylene oxide polymers , 2000 .

[11]  M. Watanabe,et al.  High ionic conductivity in poly(dimethyl siloxane‐co‐ethylene oxide) dissolving lithium perchlorate , 1984 .

[12]  A. Hexemer,et al.  Effect of Molecular Weight and Salt Concentration on Conductivity of Block Copolymer Electrolytes , 2009 .

[13]  Joon-Ho Shin,et al.  Ionic liquids to the rescue? Overcoming the ionic conductivity limitations of polymer electrolytes , 2003 .

[14]  J. Ilja Siepmann,et al.  Transferable Potentials for Phase Equilibria. 6. United-Atom Description for Ethers, Glycols, Ketones, and Aldehydes , 2004 .

[15]  Ronald M. Levy,et al.  On finite‐size effects in computer simulations using the Ewald potential , 1995 .

[16]  N. Ogata,et al.  Carrier transport and generation processes in polymer electrolytes based on poly(ethylene oxide) networks , 1987 .

[17]  L. Curtiss,et al.  Quantum chemical studies of Li+ cation binding to polyalkyloxides , 2002 .

[18]  Y. W. Kim,et al.  Ionic conduction in PEO-PAN blend polymer electrolytes , 2000 .

[19]  P. V. Wright,et al.  Complexes of alkali metal ions with poly(ethylene oxide) , 1973 .

[20]  H. Sekiguchi,et al.  Lithium ion conductivity in polyoxyethylene/polyethylenimine blends , 2001 .

[21]  M. Francis,et al.  Reductive alkylation of proteins using iridium catalyzed transfer hydrogenation. , 2005, Journal of the American Chemical Society.

[22]  M. Ratner,et al.  Structure and ion transport in polymer-salt complexes , 1981 .

[23]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[24]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[25]  L. Curtiss,et al.  Towards room-temperature performance for lithium-polymer batteries , 2002 .

[26]  Peng Wang,et al.  Implementing molecular dynamics on hybrid high performance computers - short range forces , 2011, Comput. Phys. Commun..

[27]  Yong‐Tae Kim,et al.  The effect of plasticizers on transport and electrochemical properties of PEO-based electrolytes for lithium rechargeable batteries , 2002 .

[28]  Brett M. Savoie,et al.  Systematic Computational and Experimental Investigation of Lithium-Ion Transport Mechanisms in Polyester-Based Polymer Electrolytes , 2015, ACS central science.

[29]  M. Ratner,et al.  Conduction in polymers. Dynamic disorder transport , 1994 .

[30]  R. Frech,et al.  Temperature dependence of ion transport: the compensated Arrhenius equation. , 2009, The journal of physical chemistry. B.

[31]  Oleg Borodin,et al.  Mechanism of Ion Transport in Amorphous Poly(ethylene oxide)/LiTFSI from Molecular Dynamics Simulations , 2006 .

[32]  Oleg Borodin,et al.  Computer Simulations of Ion Transport in Polymer Electrolyte Membranes. , 2016, Annual review of chemical and biomolecular engineering.

[33]  B. Kim,et al.  An efficient method for removal of ruthenium byproducts from olefin metathesis reactions. , 2003, Organic letters.

[34]  M. Watanabe,et al.  Effect of Molecular Weight of Polymeric Solvent on Ion Conductive Behavior in Poly(propylene oxide) Solution of LiClO4 , 1983 .

[35]  J. B. Kerra,et al.  Towards room-temperature performance for lithium-polymer batteries , 2018 .

[36]  Michel Perrier,et al.  Phase Diagrams and Conductivity Behavior of Poly(ethylene oxide)-Molten Salt Rubbery Electrolytes , 1994 .

[37]  W. V. Gunsteren,et al.  Computer simulation of a polymer electrolyte: Lithium iodide in amorphous poly(ethylene oxide) , 1995 .

[38]  Steven J. Plimpton,et al.  Implementing molecular dynamics on hybrid high performance computers - Particle-particle particle-mesh , 2012, Comput. Phys. Commun..

[39]  M. Watanabe,et al.  Polymer electrolytes derived from dendritic polyether macromonomers , 2002 .

[40]  A. Stephan,et al.  Nanocomposite Polymer Electrolytes For Lithium Batteries , 2009 .

[41]  Cation transport in polymer electrolytes: a microscopic approach. , 2007, Physical review letters.

[42]  P. Johansson,et al.  The Influence of Inert Oxide Fillers on Poly(ethylene oxide) and Amorphous Poly(ethylene oxide) Based Polymer Electrolytes , 2001 .

[43]  J. L. Acosta,et al.  Structural, morphological and electrical characterization of polymer electrolytes based on PEO/PPO blends , 1996 .

[44]  J. Kerr,et al.  Diffusion coefficients in trimethyleneoxide containing comb branch polymer electrolytes , 2004 .

[45]  Alexander D. MacKerell,et al.  CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields , 2009, J. Comput. Chem..

[46]  Maureen H. Tang,et al.  Effect of molecular weight on conductivity of polymer electrolytes , 2011 .

[47]  M. Armand,et al.  Physical properties of solid polymer electrolyte PEO(LiTFSI) complexes , 1995 .

[48]  Lynden A. Archer,et al.  Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. , 2014, Journal of the American Chemical Society.

[49]  M. Watanabe,et al.  Ionic Conductivity of Polymeric Solid Electrolytes Based on Poly(propylene oxide) or Poly(tetramethylene oxide) , 1982 .

[50]  B. Schmidt Catalysis at the Interface of Ruthenium Carbene and Ruthenium Hydride Chemistry: Organometallic Aspects and Applications to Organic Synthesis , 2004 .

[51]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[52]  Jung-Ki Park,et al.  Ionic conduction in plasticized PVC/PMMA blend polymer electrolytes , 1997 .

[53]  B. Scrosati,et al.  Polymer Electrolytes: The Key to Lithium Polymer Batteries , 2000 .

[54]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[55]  B. A. Garetz,et al.  Effect of Grain Size on the Ionic Conductivity of a Block Copolymer Electrolyte , 2014 .

[56]  O. Borodin,et al.  Molecular Dynamics Simulations of Poly(ethylene oxide)/LiI Melts. 1. Structural and Conformational Properties , 1998 .

[57]  S. Prabaharan,et al.  Enhanced lithium ion transport in PEO-based solid polymer electrolytes employing a novel class of plasticizers , 1997 .

[58]  K. Wagener,et al.  Acyclic diene metathesis (ADMET) polymerization. Synthesis of unsaturated polythioethers , 1993 .

[59]  Thomas F. Miller,et al.  Chemically Specific Dynamic Bond Percolation Model for Ion Transport in Polymer Electrolytes , 2015 .

[60]  E. Kramer,et al.  Allyl Glycidyl Ether-Based Polymer Electrolytes for Room Temperature Lithium Batteries , 2013 .

[61]  M. Dissanayake,et al.  Ionic conductivity of plasticized(PEO)-LiCF3SO3 electrolytes , 1998 .

[62]  C. Wick,et al.  Computational Investigation on the Role of Plasticizers on Ion Conductivity in Poly(ethylene oxide) LiTFSI Electrolytes , 2010 .

[63]  B. Scrosati,et al.  Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes , 2001 .

[64]  K. Kanehori,et al.  Ionic conductivity of electrolytes formed from PEO-LiCF3SO3 complex low molecular weight poly(ethylene glycol) , 1987 .

[65]  Thomas F. Miller,et al.  Effect of monomer structure on ionic conductivity in a systematic set of polyester electrolytes , 2016 .