Capacities of quantum channels and how to find them

Abstract. We survey what is known about the information transmitting capacities of quantum channels, and give a proposal for how to calculate some of these capacities using linear programming.

[1]  R. Werner,et al.  On Some Additivity Problems in Quantum Information Theory , 2000, math-ph/0003002.

[2]  L. B. Levitin On the quantum measure of information , 1996 .

[3]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[4]  P. Shor Additivity of the classical capacity of entanglement-breaking quantum channels , 2002, quant-ph/0201149.

[5]  E. Prugovec̆ki Information-theoretical aspects of quantum measurement , 1977 .

[6]  B. De Moor,et al.  Variational characterizations of separability and entanglement of formation , 2001 .

[7]  John R. Pierce,et al.  The early days of information theory , 1973, IEEE Trans. Inf. Theory.

[8]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[9]  Robert R. Tucci Relaxation Method For Calculating Quantum Entanglement , 2001, quant-ph/0101123.

[10]  B. M. Terhal,et al.  QUANTUM CAPACITY IS PROPERLY DEFINED WITHOUT ENCODINGS , 1998 .

[11]  Hiroshi Nagaoka,et al.  Numerical Experiments on The Capacity of Quantum Channel with Entangled Input States , 2000 .

[12]  R. Werner,et al.  On Some Additivity Problems in Quantum Information Theory , 2000, math-ph/0003002.

[13]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[14]  Jossy Sayir Iterating the Arimoto-Blahut algorithm for faster convergence , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[15]  A. Holevo On entanglement-assisted classical capacity , 2001, quant-ph/0106075.

[16]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[17]  P. Shor,et al.  QUANTUM-CHANNEL CAPACITY OF VERY NOISY CHANNELS , 1997, quant-ph/9706061.

[18]  H. Nagaoka,et al.  A new proof of the channel coding theorem via hypothesis testing in quantum information theory , 2002, Proceedings IEEE International Symposium on Information Theory,.

[19]  A. S. Holevo,et al.  Entanglement-assisted capacity of constrained channels , 2002, Quantum Informatics.

[20]  A. Winter,et al.  Remarks on Additivity of the Holevo Channel Capacity and of the Entanglement of Formation , 2002, quant-ph/0206148.

[21]  Schumacher,et al.  Classical information capacity of a quantum channel. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[22]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[23]  S. Lloyd Capacity of the noisy quantum channel , 1996, quant-ph/9604015.

[24]  L. B. Levitin,et al.  Optimal Quantum Measurements for Two Pure and Mixed States , 1995 .

[25]  D. Gottesman An Introduction to Quantum Error Correction , 2000, quant-ph/0004072.

[26]  Schumacher,et al.  Quantum coding. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[27]  Richard E. Blahut,et al.  Computation of channel capacity and rate-distortion functions , 1972, IEEE Trans. Inf. Theory.

[28]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[29]  Ashish V. Thapliyal,et al.  Entanglement-Assisted Classical Capacity of Noisy Quantum Channels , 1999, Physical Review Letters.

[30]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[31]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[32]  Horodecki Unified approach to quantum capacities: towards quantum noisy coding theorem , 2000, Physical review letters.

[33]  K. Kraus,et al.  Operations and measurements. II , 1970 .

[34]  K. Audenaert,et al.  Communications in Mathematical Physics On Strong Superadditivity of the Entanglement of Formation , 2004 .

[35]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[36]  M. Ruskai Inequalities for quantum entropy: A review with conditions for equality , 2002, quant-ph/0205064.

[37]  A. Shimony,et al.  Bell’s theorem without inequalities , 1990 .

[38]  Masahito Hayashi,et al.  General formulas for capacity of classical-quantum channels , 2003, IEEE Transactions on Information Theory.

[39]  D. Bruß Characterizing Entanglement , 2001, quant-ph/0110078.

[40]  C. King The capacity of the quantum depolarizing channel , 2003, IEEE Trans. Inf. Theory.

[41]  Peter W. Shor,et al.  Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.

[42]  R. Mcweeny On the Einstein-Podolsky-Rosen Paradox , 2000 .

[43]  Benjamin Schumacher,et al.  A new proof of the quantum noiseless coding theorem , 1994 .

[44]  Peter W. Shor The adaptive classical capacity of a quantum channel, or Information capacities of three symmetric pure states in three dimensions , 2004, IBM J. Res. Dev..

[45]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[46]  Peter W. Shor,et al.  Quantum Information Theory: Results and Open Problems , 2000 .