Tailoring Plasmon Coupling in Self-Assembled One-Dimensional Au Nanoparticle Chains through Simultaneous Control of Size and Gap Separation.

We investigated the near- and far-field response of one-dimensional chains of Au nanoparticles (NPs) fabricated with high structural control through template guided self-assembly. We demonstrate that the density of polyethylene glycol (PEG) ligands grafted onto the NP surface, in combination with the buffer conditions, facilitate a systematic variation of the average gap width (g) at short separations of g<1.1nm. The overall size (n) of the cluster was controlled through the template. The ability to independently vary n and g allowed for a rational tuning of the spectral response in individual NP clusters over a broad spectral range. We used this structural control for a systematic investigation of the electromagnetic coupling underlying the superradiant cluster mode. Independent of the chain length, plasmon coupling is dominated by direct neighbor interactions. A decrease in coupling strength at separations ≲0.5nm indicates the presence of non-local and/or quantum mechanical coupling mechanisms.

[1]  Michael J. Ford,et al.  Plasmonic Resonances of Closely Coupled Gold Nanosphere Chains , 2009 .

[2]  P. Kik,et al.  Cascaded field enhancement in plasmon resonant dimer nanoantennas compatible with two-dimensional nanofabrication methods , 2012 .

[3]  S. Gray,et al.  Solvent-Mediated End-to-End Assembly of Gold Nanorods. , 2010, The journal of physical chemistry letters.

[4]  Kuniaki Nagayama,et al.  Capillary forces between colloidal particles , 1994 .

[5]  F. D. Abajo,et al.  Nonlocal Effects in the Plasmons of Strongly Interacting Nanoparticles, Dimers, and Waveguides , 2008, 0802.0040.

[6]  Hongxing Xu,et al.  Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering , 2001 .

[7]  J. Khurgin,et al.  Practical limits of absorption enhancement near metal nanoparticles , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[8]  Prashant K. Jain,et al.  On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation , 2007 .

[9]  C. T. Chan,et al.  Plasmonic modes in periodic metal nanoparticle chains: a direct dynamic eigenmode analysis. , 2006, Optics letters.

[10]  Luca Dal Negro,et al.  Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays. , 2009, ACS nano.

[11]  Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery. , 2011, Nanoscale.

[12]  Gunnar Glasser,et al.  Parameters influencing the templated growth of colloidal crystals on chemically patterned surfaces. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[13]  Michael I. Mishchenko,et al.  Calculation of the T matrix and the scattering matrix for ensembles of spheres , 1996 .

[14]  Bo Yan,et al.  Optimizing Gold Nanoparticle Cluster Configurations (n ≤ 7) for Array Applications. , 2011, The journal of physical chemistry. C, Nanomaterials and interfaces.

[15]  L. A. Perez,et al.  Rational design of plasmonic nanostructures for biomolecular detection: interplay between theory and experiments. , 2012, ACS nano.

[16]  Qi-Huo Wei,et al.  Plasmon Resonance of Finite One-Dimensional Au Nanoparticle Chains , 2004 .

[17]  Emil Prodan,et al.  Quantum description of the plasmon resonances of a nanoparticle dimer. , 2009, Nano letters.

[18]  M. Arnold,et al.  Universal scaling of local plasmons in chains of metal spheres. , 2010, Optics express.

[19]  B. Reinhard,et al.  Design and Implementation of Noble Metal Nanoparticle Cluster Arrays for Plasmon Enhanced Biosensing. , 2011, The journal of physical chemistry. C, Nanomaterials and interfaces.

[20]  T. Jain,et al.  Self-assembled nanogaps via seed-mediated growth of end-to-end linked gold nanorods. , 2009, ACS nano.

[21]  Harry A. Atwater,et al.  Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.

[22]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[23]  Richard A. Soref,et al.  Plasmonic light-emission enhancement with isolated metal nanoparticles and their coupled arrays , 2008 .

[24]  Naomi J Halas,et al.  Connecting the dots: Reinventing optics for nanoscale dimensions , 2009, Proceedings of the National Academy of Sciences.

[25]  Prashant K. Jain,et al.  Surface Plasmon Coupling and Its Universal Size Scaling in Metal Nanostructures of Complex Geometry: Elongated Particle Pairs and Nanosphere Trimers , 2008 .

[26]  Nader Engheta,et al.  Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines , 2006 .

[27]  George C. Schatz,et al.  Nanoparticle optical properties: Far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles , 2008 .

[28]  B. Reinhard,et al.  Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices. , 2012, Nano letters.

[29]  J. Martínez‐Pastor,et al.  Molecular-mediated assembly of silver nanoparticles with controlled interparticle spacing and chain length , 2012 .

[30]  P. Kik,et al.  Cascaded plasmon resonant field enhancement in nanoparticle dimers in the point dipole limit , 2012 .

[31]  A Paul Alivisatos,et al.  Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles. , 2005, Nano letters.

[32]  Federico Capasso,et al.  Self-Assembled Plasmonic Nanoparticle Clusters , 2010, Science.

[33]  B. Reinhard,et al.  Calibration of Silver Plasmon Rulers in the 1-25 nm Separation Range: Experimental Indications of Distinct Plasmon Coupling Regimes. , 2010, The journal of physical chemistry. C, Nanomaterials and interfaces.

[34]  From Slow to Superluminal Propagation: Dispersive Properties of Surface Plasmon Polaritons in Linear Chains of Metallic Nanospheroids , 2007, 0709.2660.

[35]  A. Borisov,et al.  Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. , 2012, Nano letters.

[36]  George C Schatz,et al.  Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays. , 2004, The Journal of chemical physics.

[37]  Lechner,et al.  Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance , 2000, Physical review letters.

[38]  Stephan Link,et al.  Energy transport in metal nanoparticle chains via sub-radiant plasmon modes. , 2011, Optics express.

[39]  D. Bergman,et al.  Self-similar chain of metal nanospheres as efficient nanolens , 2003, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[40]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[41]  Jennifer A. Dionne,et al.  Observation of quantum tunneling between two plasmonic nanoparticles. , 2013, Nano letters.

[42]  S. Link,et al.  Toward plasmonic polymers. , 2012, Nano letters.

[43]  J. Khurgin,et al.  Comparative study of field enhancement between isolated and coupled metal nanoparticles: An analytical approach , 2010 .

[44]  Peter Nordlander,et al.  Plasmonic nanostructures: artificial molecules. , 2007, Accounts of chemical research.

[45]  Prashant V. Kamat,et al.  Uniaxial Plasmon Coupling through Longitudinal Self-Assembly of Gold Nanorods , 2004 .