Using Variable Neighborhood Search to improve the Support Vector Machine performance in embedded automotive applications

In this work we show that a metaheuristic, the variable neighborhood search (VNS), can be effectively used in order to improve the performance of the hardware-friendly version of the support vector machine (SVM). Our target is the implementation of the feed-forward phase of SVM on resource-limited hardware devices, such as field programmable gate arrays (FPGAs) and digital signal processors (DSPs). The proposal has been tested on a machine-vision benchmark dataset for embedded automotive applications, showing considerable performance improvements respect to previously used techniques.

[1]  Pierre Hansen,et al.  Variable Neighborhood Search , 2018, Handbook of Heuristics.

[2]  Dharma P. Agrawal,et al.  SVM-based intrusion detection system for wireless ad hoc networks , 2003, 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484).

[3]  S. Sathiya Keerthi,et al.  Evaluation of simple performance measures for tuning SVM hyperparameters , 2003, Neurocomputing.

[4]  Davide Anguita,et al.  Feed-Forward Support Vector Machine Without Multipliers , 2006, IEEE Transactions on Neural Networks.

[5]  Michael I. Jordan,et al.  Nonparametric decentralized detection using kernel methods , 2005, IEEE Transactions on Signal Processing.

[6]  Pierre Hansen,et al.  Variable neighborhood search , 1997, Eur. J. Oper. Res..

[7]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[8]  Erkki Oja,et al.  Artificial neural networks. Formal models and their applications , 2005 .

[9]  A. Ghio,et al.  A Support Vector Machine based pedestrian recognition system on resource-limited hardware architectures , 2007, 2007 Ph.D Research in Microelectronics and Electronics Conference.

[10]  Robert Tibshirani,et al.  The Entire Regularization Path for the Support Vector Machine , 2004, J. Mach. Learn. Res..

[11]  Sayan Mukherjee,et al.  Choosing Multiple Parameters for Support Vector Machines , 2002, Machine Learning.

[12]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.

[13]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[14]  Karl S. Hemmert,et al.  Architectural Modifications to Improve Floating-Point Unit Efficiency in FPGAs , 2006, 2006 International Conference on Field Programmable Logic and Applications.

[15]  D. Anguita,et al.  The effect of quantization on support vector machines with Gaussian kernel , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[16]  Enrique Alba,et al.  Parallel Metaheuristics: A New Class of Algorithms , 2005 .

[17]  Manuel Iori,et al.  Metaheuristic algorithms for combinatorial optimization problems , 2005, 4OR.

[18]  John Wawrzynek,et al.  The design of a neuro-microprocessor , 1993, IEEE Trans. Neural Networks.

[19]  John Wawrzynek,et al.  Using simulations of reduced precision arithmetic to design a neuro-microprocessor , 1993, J. VLSI Signal Process..

[20]  Davide Anguita,et al.  A digital architecture for support vector machines: theory, algorithm, and FPGA implementation , 2003, IEEE Trans. Neural Networks.

[21]  Enrique Alba,et al.  An Introduction to Metaheuristic Techniques , 2005 .

[22]  Prashant J. Shenoy,et al.  The case for multi--tier camera sensor networks , 2005, NOSSDAV '05.

[23]  Mahesan Niranjan,et al.  Uncertainty in geometric computations , 2002 .

[24]  Davide Anguita,et al.  A support vector machine with integer parameters , 2008, Neurocomputing.

[25]  Michel Verleysen,et al.  LS-SVM Hyperparameter Selection with a Nonparametric Noise Estimator , 2005, ICANN.

[26]  Dariu Gavrila,et al.  An Experimental Study on Pedestrian Classification , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Davide Anguita,et al.  A Hardware-friendly Support Vector Machine for Embedded Automotive Applications , 2007, 2007 International Joint Conference on Neural Networks.

[28]  Michel Gendreau,et al.  Handbook of Metaheuristics , 2010 .

[29]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[30]  Marcos M. Campos,et al.  SVM in Oracle Database 10g: Removing the Barriers to Widespread Adoption of Support Vector Machines , 2005, VLDB.

[31]  Kung Yao,et al.  Array Processing for Target DOA, Localization, and Classification Based on AML and SVM Algorithms in Sensor Networks , 2003, IPSN.

[32]  Russell Tessier,et al.  Floating point unit generation and evaluation for FPGAs , 2003, 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, 2003. FCCM 2003..

[33]  Don R. Hush,et al.  QP Algorithms with Guaranteed Accuracy and Run Time for Support Vector Machines , 2006, J. Mach. Learn. Res..