Conjugated wrapping polymer influences on photoexcitation of single-walled carbon nanotube-based thin film transistors

The fabrication of high-purity semiconducting single-walled carbon nanotubes (sc-SWNTs) often utilizes conjugated polymers to isolate the semiconducting from the metallic species.

[1]  B. Lessard,et al.  Networks of Conjugated Polymer-Wrapped Single-Walled Carbon Nanotubes through Controlled Drop-Dispensing for Thin-Film Transistors , 2023, ACS Applied Nano Materials.

[2]  B. Lessard,et al.  N‐Type Single Walled Carbon Nanotube Thin Film Transistors Using Green Tri‐Layer Polymer Dielectric , 2023, Advanced Materials Interfaces.

[3]  E. I. Lozinskaya,et al.  Mechanically Robust Poly(ionic liquid) Block Copolymers as Self-Assembling Gating Materials for Single-Walled Carbon-Nanotube-Based Thin-Film Transistors , 2023, ACS applied polymer materials.

[4]  B. Lessard,et al.  Interfacial Ultraviolet Cross-Linking of Green Bilayer Dielectrics. , 2023, ACS applied materials & interfaces.

[5]  A. Adam,et al.  Annealing effect on the thermoelectric properties of multiwall carbon nanotubes , 2022, Physica E: Low-dimensional Systems and Nanostructures.

[6]  Darien J. Morrow,et al.  Room Temperature Lasing from Semiconducting Single-Walled Carbon Nanotubes. , 2022, ACS nano.

[7]  B. Lessard,et al.  Poly(ionic liquid) dielectric for high performing P- and N-type single walled carbon nanotube transistors , 2022, Flexible and Printed Electronics.

[8]  Yafei Zhang,et al.  High-Performance Visible-Near-Infrared Single-Walled Carbon Nanotube Photodetectors via Interfacial Charge-Transfer-Induced Improvement by Surface Doping. , 2022, ACS applied materials & interfaces.

[9]  B. Lessard,et al.  Contact Engineering in Single-Walled Carbon Nanotube Thin-Film Transistors: Implications for Silane-Treated SiO2 Substrates , 2022, ACS Applied Nano Materials.

[10]  R. Krupke,et al.  Electroluminescence from Single-Walled Carbon Nanotubes with Quantum Defects. , 2022, ACS nano.

[11]  Yu Cao,et al.  Comparative study of the extraction selectivity of PFO-BPy and PCz for small to large diameter single-walled carbon nanotubes , 2022, Nano Research.

[12]  B. Lessard,et al.  Benchmarking contact quality in N-type organic thin film transistors through an improved virtual-source emission-diffusion model , 2022, Applied Physics Reviews.

[13]  S. Mannsfeld,et al.  Impact of injection limitations on the contact resistance and the carrier mobility of organic field effect transistors , 2021, Organic Electronics.

[14]  B. Lessard,et al.  High Performance Organic Electronic Devices Based on a Green Hybrid Dielectric , 2021, Advanced Electronic Materials.

[15]  S. Bachilo,et al.  Quantum Light Emission from Coupled Defect States in DNA-Functionalized Carbon Nanotubes. , 2021, ACS nano.

[16]  J. Zaumseil,et al.  Charge Transfer from Photoexcited Semiconducting Single-Walled Carbon Nanotubes to Wide-Bandgap Wrapping Polymer , 2021, The journal of physical chemistry. C, Nanomaterials and interfaces.

[17]  B. Lessard,et al.  Excess Polymer in Single-Walled Carbon Nanotube Thin-Film Transistors: Its Removal Prior to Fabrication Is Unnecessary. , 2021, ACS nano.

[18]  M. Beard,et al.  Direct Detection of Circularly Polarized Light Using Chiral Copper Chloride–Carbon Nanotube Heterostructures , 2021, ACS nano.

[19]  Byung Gi Kim,et al.  Strong dark current suppression in flexible organic photodetectors by carbon nanotube transparent electrodes , 2021 .

[20]  A. Nasibulin,et al.  Optimization of Optoelectronic Properties of Patterned Single-Walled Carbon Nanotube Films. , 2020, ACS applied materials & interfaces.

[21]  J. Lefebvre,et al.  Carbon Nanotube Transistors as Gas Sensors: Response Differentiation Using Polymer Gate Dielectrics , 2019, ACS Applied Polymer Materials.

[22]  Alex Anderson Lima,et al.  Modeling organic thin-film transistors based on the virtual source concept: A case study , 2019, Solid-State Electronics.

[23]  H. Wong,et al.  Low-voltage high-performance flexible digital and analog circuits based on ultrahigh-purity semiconducting carbon nanotubes , 2019, Nature Communications.

[24]  B. Lessard,et al.  Polyfluorene-Sorted Semiconducting Single-Walled Carbon Nanotubes for Applications in Thin-Film Transistors , 2019, Chemistry of Materials.

[25]  Ravinder Dahiya,et al.  Energy autonomous electronic skin , 2019, npj Flexible Electronics.

[26]  B. Lessard,et al.  Polycarbazole‐Sorted Semiconducting Single‐Walled Carbon Nanotubes for Incorporation into Organic Thin Film Transistors , 2018, Advanced Electronic Materials.

[27]  T. Swager,et al.  Carbon Nanotube Chemical Sensors. , 2018, Chemical reviews.

[28]  Yang Han,et al.  Recent Progress in High‐Mobility Organic Transistors: A Reality Check , 2018, Advanced materials.

[29]  Erik T Thostenson,et al.  Thin and Flexible Carbon Nanotube-Based Pressure Sensors with Ultrawide Sensing Range. , 2018, ACS sensors.

[30]  J. Lefebvre,et al.  Sorting of Semiconducting Single-Walled Carbon Nanotubes in Polar Solvents with an Amphiphilic Conjugated Polymer Provides General Guidelines for Enrichment. , 2018, ACS nano.

[31]  C. Brabec,et al.  Excited-State Interaction of Semiconducting Single-Walled Carbon Nanotubes with Their Wrapping Polymers , 2017, The journal of physical chemistry letters.

[32]  S. Grimm,et al.  Aerosol‐Jet Printing of Polymer‐Sorted (6,5) Carbon Nanotubes for Field‐Effect Transistors with High Reproducibility , 2017 .

[33]  A. Franklin,et al.  Completely Printed, Flexible, Stable, and Hysteresis‐Free Carbon Nanotube Thin‐Film Transistors via Aerosol Jet Printing , 2017 .

[34]  Sheng Wang,et al.  Plasmonic Enhanced Performance of an Infrared Detector Based on Carbon Nanotube Films. , 2017, ACS applied materials & interfaces.

[35]  Le Cai,et al.  Fully printed flexible carbon nanotube photodetectors , 2017 .

[36]  A. Adronov,et al.  Influence of Polymer Electronics on Selective Dispersion of Single-Walled Carbon Nanotubes. , 2016, Chemistry.

[37]  J. Lefebvre,et al.  Mechanistic Consideration of pH Effect on the Enrichment of Semiconducting SWCNTs by Conjugated Polymer Extraction , 2016 .

[38]  Gerald J. Brady,et al.  Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs , 2016, Science Advances.

[39]  I. McCulloch,et al.  Avoid the kinks when measuring mobility , 2016, Science.

[40]  M. Caironi,et al.  Inkjet Printed Single‐Walled Carbon Nanotube Based Ambipolar and Unipolar Transistors for High‐Performance Complementary Logic Circuits , 2016 .

[41]  Thomas N Jackson,et al.  Mobility overestimation due to gated contacts in organic field-effect transistors , 2016, Nature Communications.

[42]  Le Cai,et al.  Bolometric-Effect-Based Wavelength-Selective Photodetectors Using Sorted Single Chirality Carbon Nanotubes , 2015, Scientific Reports.

[43]  Zhenan Bao,et al.  Conjugated polymer sorting of semiconducting carbon nanotubes and their electronic applications , 2015 .

[44]  Xuedan Ma,et al.  Room-temperature single-photon generation from solitary dopants of carbon nanotubes. , 2015, Nature nanotechnology.

[45]  F. Léonard,et al.  Uncooled Carbon Nanotube Photodetectors , 2015, 1505.02702.

[46]  C. Kingston,et al.  Raman microscopy mapping for the purity assessment of chirality enriched carbon nanotube networks in thin-film transistors , 2015, Nano Research.

[47]  Ja Hoon Koo,et al.  Large‐Area Assembly of Densely Aligned Single‐Walled Carbon Nanotubes Using Solution Shearing and Their Application to Field‐Effect Transistors , 2015, Advanced materials.

[48]  Tae-Jun Ha,et al.  Highly stable hysteresis-free carbon nanotube thin-film transistors by fluorocarbon polymer encapsulation. , 2014, ACS applied materials & interfaces.

[49]  Hui Li,et al.  Interaction of bipolaron with the H2O/O2 redox couple causes current hysteresis in organic thin-film transistors , 2014, Nature Communications.

[50]  S. Marrink,et al.  Semiconducting Single‐Walled Carbon Nanotubes on Demand by Polymer Wrapping , 2013, Advanced materials.

[51]  B. Larsen,et al.  High-yield dispersions of large-diameter semiconducting single-walled carbon nanotubes with tunable narrow chirality distributions. , 2013, ACS nano.

[52]  T. Swager,et al.  Emerging Applications of Carbon Nanotubes , 2011 .

[53]  T. Fujigaya,et al.  One-pot Separation of Highly Enriched (6,5)-Single-walled Carbon Nanotubes Using a Fluorene-based Copolymer , 2011 .

[54]  M. Johnston,et al.  Ultrafast charge separation at a polymer-single-walled carbon nanotube molecular junction. , 2011, Nano letters.

[55]  S. Beaupré,et al.  Solar‐Energy Production and Energy‐Efficient Lighting: Photovoltaic Devices and White‐Light‐Emitting Diodes Using Poly(2,7‐fluorene), Poly(2,7‐carbazole), and Poly(2,7‐dibenzosilole) Derivatives , 2010, Advanced materials.

[56]  X. Zhu,et al.  Charge-transfer excitons at organic semiconductor surfaces and interfaces. , 2009, Accounts of chemical research.

[57]  Richard Martel,et al.  The Role of the Oxygen/Water Redox Couple in Suppressing Electron Conduction in Field‐Effect Transistors , 2009 .

[58]  Chun-Wei Chen,et al.  Polymer structure and solvent effects on the selective dispersion of single-walled carbon nanotubes. , 2008, Journal of the American Chemical Society.

[59]  Yang Yang,et al.  Enhancement in open circuit voltage through a cascade-type energy band structure , 2007 .

[60]  R. Nicholas,et al.  Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. , 2007, Nature nanotechnology.

[61]  K. Balasubramanian,et al.  Functionalized metallic carbon nanotube devices for pH sensing. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[62]  Jenny Nelson,et al.  Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer. , 2006, The journal of physical chemistry. B.

[63]  J. U. Lee,et al.  Photovoltaic effect in ideal carbon nanotube diodes , 2005 .

[64]  A. Bezryadin,et al.  Quasi-ballistic electron transport in as-produced and annealed multiwall carbon nanotubes , 2005, cond-mat/0505378.

[65]  Phaedon Avouris,et al.  Photoconductivity spectra of single-carbon nanotubes: implications on the nature of their excited States. , 2005, Nano letters.

[66]  John R. Reynolds,et al.  Multiply Colored Electrochromic Carbazole-Based Polymers , 1997 .

[67]  Riichiro Saito,et al.  Electronic structure of chiral graphene tubules , 1992 .