Varieties with maximum likelihood degree one

We show that algebraic varieties with maximum likelihood degree one are exactly the images of reduced A-discriminantal varieties under monomial maps with finite fibers. The maximum likelihood estimator corresponding to such a variety is Kapranov's Horn uniformization. This extends Kapranov's characterization of A-discriminantal hypersurfaces to varieties of arbitrary codimension.

[1]  P. Orlik,et al.  The number of critical points of a product of powers of linear functions , 1995 .

[2]  L. Pachter,et al.  Algebraic Statistics for Computational Biology: Preface , 2005 .

[3]  M. Kapranov,et al.  A characterization ofA-discriminantal hypersurfaces in terms of the logarithmic Gauss map , 1991 .

[4]  Bernd Sturmfels,et al.  The maximum likelihood degree , 2004, math/0406533.

[5]  J. Damon On the number of Bounding Cycles for Nonlinear Arrangements , 2000 .

[6]  Seth Sullivant,et al.  Lectures on Algebraic Statistics , 2008 .

[7]  Alicia Dickenstein,et al.  Tropical Discriminants , 2005, math/0510126.

[8]  Daniel C. Cohen,et al.  Critical Points and Resonance of Hyperplane Arrangements , 2009, Canadian Journal of Mathematics.

[9]  The Gauss map and a noncompact Riemann-Roch formula for constructible sheaves on semiabelian varieties , 1999, math/9909088.

[10]  Alexander Varchenko,et al.  Critical Points of the Product of Powers of Linear Functions and Families of Bases of Singular Vectors , 1993, hep-th/9312119.

[11]  J. Damon,et al.  Critical Points of Affine Multiforms on the Complements of Arrangements , 1999 .

[12]  June Huh,et al.  The maximum likelihood degree of a very affine variety , 2012, Compositio Mathematica.

[13]  Bernd Sturmfels,et al.  Open Problems in Algebraic Statistics , 2007, 0707.4558.

[14]  G. Denham,et al.  A geometric deletion-restriction formula , 2011, 1110.2799.

[15]  Bernd Sturmfels,et al.  Solving the Likelihood Equations , 2005, Found. Comput. Math..

[16]  C. Sabbah,et al.  Caractérisation des D-modules hypergéométriques irréductibles sur le tore, II , 1991 .

[17]  On a conjecture of V archenko , 1995, alg-geom/9503016.

[18]  Alicia Dickenstein,et al.  Some results on inhomogeneous discriminants , 2006 .

[19]  F. Loeser,et al.  Faisceaux pervers $\ell$-adiques sur un tore , 1996 .