Interface chemistry of conductive crystalline porous thin films

[1]  Y. Zhang,et al.  Precise tuning of interlayer electronic coupling in layered conductive metal-organic frameworks , 2022, Nature Communications.

[2]  S. Horike,et al.  Fine Pore-Structure Engineering by Ligand Conformational Control of Naphthalene Diimide-Based Semiconducting Porous Coordination Polymers for Efficient Chemiresistive Gas Sensing. , 2022, Angewandte Chemie.

[3]  M. Barr,et al.  Solution Atomic Layer Deposition of Smooth, Continuous, Crystalline Metal–Organic Framework Thin Films , 2022, Chemistry of materials : a publication of the American Chemical Society.

[4]  S. Horike,et al.  Separating water isotopologues using diffusion-regulatory porous materials , 2022, Nature.

[5]  Z. Gu,et al.  Electrically regulating nonlinear optical limiting of metal-organic framework film , 2022, Nature Communications.

[6]  S. Horike,et al.  The development of molecule-based porous material families and their future prospects , 2022, Nature Materials.

[7]  Ming‐Shui Yao,et al.  Non-contact real-time detection of trace nitro-explosives by MOF composites visible-light chemiresistor , 2022, National Science Review.

[8]  M. Yamashita,et al.  An electrically conductive metallocycle: densely packed molecular hexagons with π-stacked radicals , 2022, Chemical science.

[9]  S. D. Feyter,et al.  Observing polymerization in 2D dynamic covalent polymers , 2022, Nature.

[10]  Baorui Cheng,et al.  Linker Redox Mediated Control of Morphology and Properties in Semiconducting Iron‐Semiquinoid Coordination Polymers , 2021, Angewandte Chemie.

[11]  Yuhao Zhu,et al.  Electrically conductive 2D covalent organic frameworks , 2021, Trends in Chemistry.

[12]  A. Heck,et al.  Elucidation of the pre-nucleation phase directing metal-organic framework formation , 2021, Cell Reports Physical Science.

[13]  Yijie Zhang,et al.  Defect‐Free Metal–Organic Framework Membrane for Precise Ion/Solvent Separation toward Highly Stable Magnesium Metal Anode , 2021, Advanced materials.

[14]  S. Kitagawa,et al.  Concluding remarks: current and next generation MOFs. , 2021, Faraday discussions.

[15]  Yunqi Liu,et al.  Electrically Conductive Metal–Organic Framework Thin Film‐Based On‐Chip Micro‐Biosensor: A Platform to Unravel Surface Morphology‐Dependent Biosensing , 2021, Advanced Functional Materials.

[16]  S. Mannsfeld,et al.  Interfacial Synthesis of Layer-Oriented 2D Conjugated Metal-Organic Framework Films toward Directional Charge Transport. , 2021, Journal of the American Chemical Society.

[17]  Michael W Anderson,et al.  Crystal growth of the core and rotated epitaxial shell of a heterometallic metal-organic framework revealed with atomic force microscopy. , 2021, Faraday discussions.

[18]  K. Asakura,et al.  Development of Operando Polarization-Dependent Total Reflection Fluorescence X-ray Absorption Fine Structure Technique for Three-Dimensional Structure Determination of Active Metal Species on a Model Catalyst Surface under Working Conditions , 2021 .

[19]  T. S. Mayor,et al.  Synthesis of 2D Porous Crystalline Materials in Simulated Microgravity , 2021, Advanced materials.

[20]  H. Cai,et al.  Solution‐Processable Metal–Organic Framework Nanosheets with Variable Functionalities , 2021, Advanced materials.

[21]  C. Wilmer,et al.  Size Discrimination of Carbohydrates via Conductive Carbon Nanotube@Metal Organic Framework Composites. , 2021, Journal of the American Chemical Society.

[22]  Bo Wang,et al.  The Synthesis of Hexaazatrinaphthylene Based 2D Conjugated Copper Metal-Organic Framework for Highly Selective and Stable Electroreduction of CO⁠2⁠ to Methane. , 2021, Angewandte Chemie.

[23]  S. Kitagawa,et al.  Hybridization of Emerging Crystalline Porous Materials: Synthesis Dimensionality and Electrochemical Energy Storage Application , 2021, Advanced Energy Materials.

[24]  T. Bein,et al.  An Electrically Conducting Three‐Dimensional Iron–Catecholate Porous Framework , 2021, Angewandte Chemie.

[25]  H. Kitagawa,et al.  Control of Proton-Conductive Behavior with Nanoenvironment within Metal-Organic Materials. , 2021, Small.

[26]  François-Xavier Coudert,et al.  Thermodynamic exploration of xenon/krypton separation based on a high-throughput screening. , 2021, Faraday discussions.

[27]  P. Král,et al.  Three-step nucleation of metal–organic framework nanocrystals , 2021, Proceedings of the National Academy of Sciences.

[28]  Xinliang Feng,et al.  Two-dimensional conjugated metal-organic frameworks (2D c-MOFs): chemistry and function for MOFtronics. , 2021, Chemical Society reviews.

[29]  Siyoung Q. Choi,et al.  Large-area synthesis of nanoscopic catalyst-decorated conductive MOF film using microfluidic-based solution shearing , 2021, Nature Communications.

[30]  Gang Xu,et al.  Metal–organic frameworks and their derivatives for electrically-transduced gas sensors , 2021, Coordination Chemistry Reviews.

[31]  Yunqi Liu,et al.  Electrochemical Synthesis of Large Area Two-Dimensional Metal-Organic Framework Films on Copper Anodes. , 2020, Angewandte Chemie.

[32]  Yunqi Liu,et al.  Ultrafast In Situ Synthesis of Large-Area Conductive Metal-Organic Frameworks on Substrates for Flexible Chemiresistive Sensing. , 2020, ACS applied materials & interfaces.

[33]  V. Deshpande,et al.  Unique Thermoelectric Properties Induced by Intrinsic Nanostructuring in a Polycrystalline Thin‐Film Two‐Dimensional Metal–Organic Framework, Copper Benzenehexathiol , 2020, physica status solidi (a).

[34]  Song Gao,et al.  Pristine hollow metal-organic frameworks: design, synthesis and application. , 2020, Angewandte Chemie.

[35]  Christopher J. Tassone,et al.  Semiconducting to Metallic Electronic Landscapes in Defects‐Controlled 2D π‐d Conjugated Coordination Polymer Thin Films , 2020, Advanced Functional Materials.

[36]  E. Fron,et al.  Label-free visualization of heterogeneities and defects in metal-organic frameworks using nonlinear optics. , 2020, Chemical communications.

[37]  S. Kitagawa,et al.  Transport properties in porous coordination polymers , 2020 .

[38]  J. Timoshenko,et al.  In Situ/Operando Electrocatalyst Characterization by X-ray Absorption Spectroscopy , 2020, Chemical reviews.

[39]  B. Diény,et al.  Review on spintronics: Principles and device applications , 2020, Journal of Magnetism and Magnetic Materials.

[40]  Daoben Zhu,et al.  Paramagnetic conducting metal-organic frameworks with three-dimensional structure. , 2020, Angewandte Chemie.

[41]  Dingxin Liu,et al.  Conductive MOFs with Photophysical Properties: Applications and Thin-Film Fabrication , 2020, Nano-micro letters.

[42]  H. Kitagawa,et al.  Proton Transport in Metal-Organic Frameworks. , 2020, Chemical reviews.

[43]  Hong Liang,et al.  Machine-learning-assisted high-throughput computational screening of high performance metal–organic frameworks , 2020, Molecular Systems Design & Engineering.

[44]  C. Hong,et al.  Post-synthetic modification of porous materials: superprotonic conductivities and membrane applications in fuel cells , 2020 .

[45]  Lilia S. Xie,et al.  Electrically Conductive Metal–Organic Frameworks , 2020, Chemical reviews.

[46]  W. Bao,et al.  Metal–Organic Framework for Transparent Electronics , 2020, Advanced science.

[47]  H. Schneider,et al.  Demonstration of a Broadband Photodetector Based on a Two‐Dimensional Metal–Organic Framework , 2020, Advanced materials.

[48]  T. He,et al.  Covalent Organic Frameworks: Design, Synthesis, and Functions. , 2020, Chemical reviews.

[49]  Jovany G. Merham,et al.  Direct Observation of Amorphous Precursor Phases in the Nucleation of Protein-Metal-Organic Frameworks. , 2020, Journal of the American Chemical Society.

[50]  Seth M. Cohen,et al.  MOF-Polymer Hybrid Materials: From Simple Composites to Tailored Architectures. , 2020, Chemical reviews.

[51]  A. Kornyshev,et al.  Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes , 2019, Nature Materials.

[52]  Wenping Hu,et al.  2D Semiconducting Metal-Organic Framework Thin Films for Organic Spin Valves. , 2019, Angewandte Chemie.

[53]  S. Sakaki,et al.  Dual-Ligand Porous Coordination Polymer Chemiresistor with Modulated Conductivity and Porosity. , 2019, Angewandte Chemie.

[54]  Christopher H. Hendon,et al.  Single Crystals of Electrically Conductive Two-Dimensional Metal–Organic Frameworks: Structural and Electrical Transport Properties , 2019, ACS central science.

[55]  Gang Xu,et al.  Van der Waals Hetero-Structured MOF-on-MOF Thin Films: Cascading Various Functions to Realize Advanced Chemiresistive Sensing. , 2019, Angewandte Chemie.

[56]  Liang Feng,et al.  Controllable Synthesis of Metal-Organic Frameworks and Their Hierarchical Assemblies , 2019, Matter.

[57]  D. Smilgies,et al.  Quantifying Multiple Crystallite Orientations and Crystal Heterogeneities in Complex Thin Film Materials , 2019, CrystEngComm.

[58]  Mohamed Eddaoudi,et al.  Imaging defects and their evolution in a metal–organic framework at sub-unit-cell resolution , 2019, Nature Chemistry.

[59]  Jacek K. Stolarczyk,et al.  Oriented Thin Films of Electroactive Triphenylene Catecholate-Based Two-Dimensional Metal-Organic Frameworks. , 2019, ACS nano.

[60]  Gareth R. Williams,et al.  Solar- versus Thermal-Driven Catalysis for Energy Conversion , 2019, Joule.

[61]  M. Yamashita,et al.  Porous Molecular Conductor: Electrochemical Fabrication of Through-Space Conduction Pathways among Linear Coordination Polymers. , 2019, Journal of the American Chemical Society.

[62]  Zhao Wang,et al.  Self‐Limiting Assembly Approaches for Nanoadditive Manufacturing of Electronic Thin Films and Devices , 2019, Advanced materials.

[63]  D. Presti,et al.  Chemiresistive Detection of Gaseous Hydrocarbons and Interrogation of Charge Transport in Cu[Ni(2,3-pyrazinedithiolate)2] by Gas Adsorption. , 2019, Journal of the American Chemical Society.

[64]  S. Sakaki,et al.  Design and control of gas diffusion process in a nanoporous soft crystal , 2019, Science.

[65]  William R. Dichtel,et al.  Controlled growth of imine-linked two-dimensional covalent organic framework nanoparticles , 2019, Chemical science.

[66]  Y. Yamauchi,et al.  Hollow Functional Materials Derived from Metal–Organic Frameworks: Synthetic Strategies, Conversion Mechanisms, and Electrochemical Applications , 2019, Advanced materials.

[67]  K. Mirica,et al.  Welding Metallophthalocyanines into Bimetallic Molecular Meshes for Ultrasensitive, Low-Power Chemiresistive Detection of Gases. , 2018, Journal of the American Chemical Society.

[68]  Yuguang Ma,et al.  A highly soluble, crystalline covalent organic framework compatible with device implementation† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c8sc04255a , 2018, Chemical science.

[69]  S. Kitagawa,et al.  Highly responsive nature of porous coordination polymer surfaces imaged by in situ atomic force microscopy , 2018, Nature Chemistry.

[70]  J. Hupp,et al.  Probing charge transfer characteristics in a donor-acceptor metal-organic framework by Raman spectroelectrochemistry and pressure-dependence studies. , 2018, Physical chemistry chemical physics : PCCP.

[71]  I. Repins,et al.  Minority and Majority Charge Carrier Mobility in Cu2ZnSnSe4 revealed by Terahertz Spectroscopy , 2018, Scientific Reports.

[72]  William R. Dichtel,et al.  Seeded growth of single-crystal two-dimensional covalent organic frameworks , 2018, Science.

[73]  J. R. Schmidt,et al.  In Situ, Time-Resolved, and Mechanistic Studies of Metal-Organic Framework Nucleation and Growth. , 2018, Chemical reviews.

[74]  Gang Xu,et al.  Layer-by-Layer Assembled Conductive Metal-Organic Framework Nanofilms for Room-Temperature Chemiresistive Sensing. , 2017, Angewandte Chemie.

[75]  A. Walsh,et al.  Metallic Conductivity in a Two-Dimensional Cobalt Dithiolene Metal-Organic Framework. , 2017, Journal of the American Chemical Society.

[76]  Miguel A. L. Marques,et al.  Predicting the Thermodynamic Stability of Solids Combining Density Functional Theory and Machine Learning , 2017 .

[77]  Susumu Kitagawa,et al.  Future Porous Materials. , 2017, Accounts of chemical research.

[78]  Gang Xu,et al.  Porous Field-Effect Transistors Based on a Semiconductive Metal-Organic Framework. , 2017, Journal of the American Chemical Society.

[79]  Dennis Sheberla,et al.  Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2 , 2016, Nature Communications.

[80]  Mircea Dincă,et al.  Electrically Conductive Porous Metal-Organic Frameworks. , 2016, Angewandte Chemie.

[81]  H. Choi,et al.  Selective Formation of Conductive Network by Radical-Induced Oxidation. , 2016, Journal of the American Chemical Society.

[82]  Daoben Zhu,et al.  A two-dimensional π–d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour , 2015, Nature Communications.

[83]  R. Fischer,et al.  Defect-Engineered Metal–Organic Frameworks , 2015, Angewandte Chemie.

[84]  Brian M. Foley,et al.  Thin Film Thermoelectric Metal–Organic Framework with High Seebeck Coefficient and Low Thermal Conductivity , 2015, Advanced materials.

[85]  C. Cramer,et al.  Quantum-Chemical Characterization of the Properties and Reactivities of Metal-Organic Frameworks. , 2015, Chemical reviews.

[86]  Feng Liu,et al.  Redox control and high conductivity of nickel bis(dithiolene) complex π-nanosheet: a potential organic two-dimensional topological insulator. , 2014, Journal of the American Chemical Society.

[87]  H. Zhou,et al.  Metal-organic frameworks (MOFs). , 2014, Chemical Society reviews.

[88]  François-Xavier Coudert,et al.  Correlated Defect Nano-Regions in a Metal–Organic Framework , 2014, Nature Communications.

[89]  H. Uehara,et al.  Polarization-Dependent Total-Reflection Fluorescence X-ray Absorption Fine Structure for 3D Structural Determination and Surface Fine Tuning , 2013, Topics in Catalysis.

[90]  Lars Öhrström,et al.  Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013) , 2013 .

[91]  R. Davey,et al.  Nucleation of organic crystals--a molecular perspective. , 2012, Angewandte Chemie.

[92]  Bruce Dunn,et al.  New Porous Crystals of Extended Metal-Catecholates , 2012 .

[93]  S. Mannsfeld,et al.  Quantitative determination of organic semiconductor microstructure from the molecular to device scale. , 2012, Chemical reviews.

[94]  C. Wilmer,et al.  Large-scale screening of hypothetical metal-organic frameworks. , 2012, Nature chemistry.

[95]  O. Shekhah,et al.  MOF thin films: existing and future applications. , 2011, Chemical Society reviews.

[96]  H. Oji,et al.  Full‐Automatic XAFS Measurement System of the Engineering Science Research II beamline BL14B2 at SPring‐8 , 2010 .

[97]  Hiroaki Yamanaka,et al.  Surface nano-architecture of a metal-organic framework. , 2010, Nature materials.

[98]  Clayton E. Mauldin,et al.  Nanostructured organic semiconductors via directed supramolecular assembly. , 2010, ACS nano.

[99]  S. Kitagawa,et al.  Soft porous crystals. , 2009, Nature chemistry.

[100]  M. Yamashita,et al.  Electroconductive porous coordination polymer Cu[Cu(pdt)2] composed of donor and acceptor building units. , 2009, Inorganic chemistry.

[101]  Takeshi Fukuma,et al.  Spurious-free cantilever excitation in liquid by piezoactuator with flexure drive mechanism. , 2009, The Review of scientific instruments.

[102]  O. Shekhah,et al.  Growth mechanism of metal-organic frameworks: insights into the nucleation by employing a step-by-step route. , 2009, Angewandte Chemie.

[103]  S. Wan,et al.  A belt-shaped, blue luminescent, and semiconducting covalent organic framework. , 2008, Angewandte Chemie.

[104]  A. Ghoufi,et al.  Quasi-elastic neutron scattering and molecular dynamics study of methane diffusion in metal organic frameworks MIL-47(V) and MIL-53(Cr). , 2008, Angewandte Chemie.

[105]  J. Vörös,et al.  Electrochemical Biosensors - Sensor Principles and Architectures , 2008, Sensors.

[106]  M. Nagaoka,et al.  Theoretical characterization of coordination space: Adsorption state and behavior of small molecules in nanochanneled metal-organic frameworks via electronic state theory, molecular mechanical and Monte Carlo simulation , 2007 .

[107]  P. Dutta,et al.  Controlling structure from the bottom-up: structural and optical properties of layer-by-layer assembled palladium coordination-based multilayers. , 2006, Journal of the American Chemical Society.

[108]  S. Tagawa,et al.  Charge-carrier dynamics in polythiophene films studied by in-situ measurement of flash-photolysis time-resolved microwave conductivity (FP-TRMC) and transient optical spectroscopy (TOS) , 2006 .

[109]  O. Yaghi,et al.  NMR studies on the diffusion of hydrocarbons on the metal-organic framework material MOF-5. , 2006, Angewandte Chemie.

[110]  Michael O'Keeffe,et al.  Porous, Crystalline, Covalent Organic Frameworks , 2005, Science.

[111]  C. Wöll,et al.  Selective nucleation and growth of metal-organic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au(111). , 2005, Journal of the American Chemical Society.

[112]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[113]  K. Kern,et al.  Steering molecular organization and host–guest interactions using two-dimensional nanoporous coordination systems , 2004, Nature materials.

[114]  A. Skoulidas Molecular dynamics simulations of gas diffusion in metal-organic frameworks: argon in CuBTC. , 2004, Journal of the American Chemical Society.

[115]  Marc-Olivier Coppens,et al.  Knudsen self- and Fickian diffusion in rough nanoporous media , 2003 .

[116]  J. Brenizer,et al.  Gas flow through aerogels , 1998 .

[117]  D. N. Jaguste,et al.  Combined surface and viscous flow of condensable vapor in porous media , 1995 .