Modern Non-Linear Function-on-Function Regression

We introduce a new class of non-linear function-on-function regression models for functional data using neural networks. We propose a framework using a hidden layer consisting of continuous neurons, called a continuous hidden layer, for functional response modeling and give two model fitting strategies, Functional Direct Neural Network (FDNN) and Functional Basis Neural Network (FBNN). Both are designed explicitly to exploit the structure inherent in functional data and capture the complex relations existing between the functional predictors and the functional response. We fit these models by deriving functional gradients and implement regularization techniques for more parsimonious results. We demonstrate the power and flexibility of our proposed method in handling complex functional models through extensive simulation studies as well as real data examples.

[1]  Zhongyi Zhu,et al.  Continuously dynamic additive models for functional data , 2016, J. Multivar. Anal..

[2]  Frédéric Ferraty,et al.  Nonparametric Functional Data Analysis: Theory and Practice (Springer Series in Statistics) , 2006 .

[3]  Piotr Kokoszka,et al.  Inference for Functional Data with Applications , 2012 .

[4]  Ping Ma,et al.  Optimal Penalized Function-on-Function Regression Under a Reproducing Kernel Hilbert Space Framework , 2018, Journal of the American Statistical Association.

[5]  Chetan Gupta,et al.  A Non-linear Function-on-Function Model for Regression with Time Series Data , 2020, 2020 IEEE International Conference on Big Data (Big Data).

[6]  Hadi Fanaee-T,et al.  Event labeling combining ensemble detectors and background knowledge , 2014, Progress in Artificial Intelligence.

[7]  Bharath K. Sriperumbudur,et al.  Optimal Prediction for Additive Function-on-Function Regression , 2017, 1708.03372.

[8]  J. Ramsay,et al.  Introduction to Functional Data Analysis , 2007 .

[9]  F. Rossi,et al.  Functional data analysis with multi layer perceptrons , 2002, Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290).

[10]  H. Lian Nonlinear functional models for functional responses in reproducing kernel hilbert spaces , 2007, math/0702120.

[11]  Jeffrey S. Morris Functional Regression , 2014, 1406.4068.

[12]  Thomas M. Stoker Consistent estimation of scaled coefficients , 2011 .

[13]  Fabrice Rossi,et al.  Theoretical Properties of Projection Based Multilayer Perceptrons with Functional Inputs , 2006, Neural Processing Letters.

[14]  Fabrice Rossi,et al.  Multi-layer Perceptrons for Functional Data Analysis: A Projection Based Approach , 2002, ICANN.

[15]  Ci-Ren Jiang,et al.  Functional single index models for longitudinal data , 2011, 1103.1726.

[16]  Michael R. W. Dawson,et al.  The Multilayer Perceptron , 2008 .

[17]  Gareth M. James,et al.  Functional additive regression , 2015, 1510.04064.

[18]  Susumu Serita,et al.  Multilayer Perceptron for Sparse Functional Data , 2019, 2019 International Joint Conference on Neural Networks (IJCNN).

[19]  Stéphane Canu,et al.  Nonlinear functional regression: a functional RKHS approach , 2010, AISTATS.

[20]  Ana-Maria Staicu,et al.  Functional Additive Mixed Models , 2012, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[21]  T. Tony Cai,et al.  Minimax and Adaptive Prediction for Functional Linear Regression , 2012 .

[22]  Bin Li,et al.  Multivariate calibration with single-index signal regression , 2009 .

[23]  David Ruppert,et al.  Optimal Prediction in an Additive Functional Model , 2013, 1301.4954.

[24]  Mathew W. McLean,et al.  Journal of Computational and Graphical Statistics Functional Generalized Additive Models Functional Generalized Additive Models Accepted Manuscript Accepted Manuscript , 2022 .

[25]  Matthew Reimherr,et al.  Non-linear Functional Modeling using Neural Networks , 2021, ArXiv.

[26]  Han Lin Shang,et al.  Methods for Scalar‐on‐Function Regression , 2017, International statistical review = Revue internationale de statistique.

[27]  Frdric Ferraty,et al.  Recent Advances in Functional Data Analysis and Related Topics , 2013 .

[28]  Matthew Reimherr,et al.  Manifold Data Analysis with Applications to High-Frequency 3D Imaging , 2017, 1710.01619.

[29]  Chetan Gupta,et al.  Remaining Useful Life Estimation Using Functional Data Analysis , 2019, 2019 IEEE International Conference on Prognostics and Health Management (ICPHM).

[30]  A. K. Md. Ehsanes Saleh,et al.  Statistics and Related Topics. , 1984 .

[31]  P. Hall,et al.  Single and multiple index functional regression models with nonparametric link , 2011, 1211.5018.

[32]  Fang Yao,et al.  Functional Additive Models , 2008 .

[33]  Fang Yao,et al.  Continuously additive models for nonlinear functional regression , 2013 .

[34]  H. Müller,et al.  Functional quadratic regression , 2010 .

[35]  J. March Introduction to the Calculus of Variations , 1999 .

[36]  Gareth M. James,et al.  Functional Adaptive Model Estimation , 2005 .

[37]  Yifan Sun,et al.  Function-on-function quadratic regression models , 2020, Comput. Stat. Data Anal..

[38]  Z. Q. John Lu,et al.  Nonparametric Functional Data Analysis: Theory And Practice , 2007, Technometrics.

[39]  C. Preda Regression models for functional data by reproducing kernel Hilbert spaces methods , 2007 .

[40]  John Boland,et al.  Generation of synthetic sequences of half‐hourly temperature , 2008 .

[41]  Frédéric Ferraty,et al.  Functional projection pursuit regression , 2013 .

[42]  Fang Yao,et al.  Structured functional additive regression in reproducing kernel Hilbert spaces , 2014, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[43]  Ana-Maria Staicu,et al.  Additive Function-on-Function Regression , 2016, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[44]  J. O. Ramsay,et al.  Functional Data Analysis (Springer Series in Statistics) , 1997 .