Mixed-integer quadrangulation

We present a novel method for quadrangulating a given triangle mesh. After constructing an as smooth as possible symmetric cross field satisfying a sparse set of directional constraints (to capture the geometric structure of the surface), the mesh is cut open in order to enable a low distortion unfolding. Then a seamless globally smooth parametrization is computed whose iso-parameter lines follow the cross field directions. In contrast to previous methods, sparsely distributed directional constraints are sufficient to automatically determine the appropriate number, type and position of singularities in the quadrangulation. Both steps of the algorithm (cross field and parametrization) can be formulated as a mixed-integer problem which we solve very efficiently by an adaptive greedy solver. We show several complex examples where high quality quad meshes are generated in a fully automatic manner.

[1]  C. Floudas Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications , 1995 .

[2]  Aaron Hertzmann,et al.  Illustrating smooth surfaces , 2000, SIGGRAPH.

[3]  David Cohen-Steiner,et al.  Restricted delaunay triangulations and normal cycle , 2003, SCG '03.

[4]  Pierre Alliez,et al.  Anisotropic polygonal remeshing , 2003, ACM Trans. Graph..

[5]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[6]  Leif Kobbelt,et al.  Direct anisotropic quad-dominant remeshing , 2004, 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings..

[7]  David Bommes,et al.  Efficient Linear System Solvers for Mesh Processing , 2005, IMA Conference on the Mathematics of Surfaces.

[8]  Konrad Polthier,et al.  Smooth feature lines on surface meshes , 2005, SGP '05.

[9]  Konstantin Mischaikow,et al.  Vector field design on surfaces , 2006, TOGS.

[10]  Pierre Alliez,et al.  Designing quadrangulations with discrete harmonic forms , 2006, SGP '06.

[11]  Peter Schröder,et al.  Discrete conformal mappings via circle patterns , 2005, TOGS.

[12]  Valerio Pascucci,et al.  Spectral surface quadrangulation , 2006, SIGGRAPH 2006.

[13]  Pierre Alliez,et al.  Periodic global parameterization , 2006, TOGS.

[14]  Konrad Polthier,et al.  QuadCover ‐ Surface Parameterization using Branched Coverings , 2007, Comput. Graph. Forum.

[15]  Hugues Hoppe,et al.  Design of tangent vector fields , 2007, SIGGRAPH 2007.

[16]  Bruno Lévy,et al.  Mesh parameterization: theory and practice , 2007, SIGGRAPH Courses.

[17]  P. Schröder,et al.  Conformal equivalence of triangle meshes , 2008, SIGGRAPH 2008.

[18]  Bruno Lévy,et al.  N-symmetry direction field design , 2008, TOGS.

[19]  David Bommes,et al.  Quadrangular Parameterization for Reverse Engineering , 2008, MMCS.

[20]  Craig Gotsman,et al.  Conformal Flattening by Curvature Prescription and Metric Scaling , 2008, Comput. Graph. Forum.

[21]  Shi-Min Hu,et al.  An incremental approach to feature aligned quad dominant remeshing , 2008, SPM '08.

[22]  YANQING CHEN,et al.  Algorithm 8 xx : CHOLMOD , supernodal sparse Cholesky factorization and update / downdate ∗ , 2006 .

[23]  L. Kobbelt,et al.  Spectral quadrangulation with orientation and alignment control , 2008, SIGGRAPH 2008.

[24]  Marco Attene,et al.  Recent Advances in Remeshing of Surfaces , 2008, Shape Analysis and Structuring.